
PyXLL User Guide
Release 5.8.0

PyXLL Ltd.

Feb 22, 2024

CONTENTS

1 Introduction to PyXLL 1
1.1 What is PyXLL? . 1
1.2 How does it work? . 1
1.3 How does PyXLL compare with other packages? . 2
1.4 Before You Start . 3
1.5 Next Steps . 3

2 What’s new in PyXLL 5 5
2.1 New Features and Improvements . 6
2.2 Important notes for upgrading from previous versions . 8

3 User Guide 10
3.1 Installing PyXLL . 10
3.2 Configuring PyXLL . 20
3.3 Worksheet Functions . 46
3.4 Real Time Data . 88
3.5 Cell Formatting . 95
3.6 Charts and Plotting . 102
3.7 Custom User Interfaces . 115
3.8 Using Pandas in Excel . 125
3.9 Customizing the Ribbon . 129
3.10 Context Menu Functions . 134
3.11 Macro Functions . 138
3.12 Working with Tables . 143
3.13 Python as a VBA Replacement . 148
3.14 Menu Functions . 156
3.15 Reloading and Rebinding . 158
3.16 Error Handling . 162
3.17 Deploying your add-in . 164
3.18 Workbook Metadata . 171

4 API Reference 172
4.1 Worksheet Functions . 172
4.2 Macro Functions . 176
4.3 Ribbon Functions . 181
4.4 Menu Functions . 183
4.5 Plotting . 184
4.6 Custom Task Panes . 186
4.7 Cell Formatting . 190
4.8 Tables . 194
4.9 Errors and Exceptions . 197
4.10 Utility Functions . 199
4.11 Event Handlers . 203
4.12 Excel C API Functions . 205

i

5 Examples 209
5.1 UDF Examples . 209
5.2 Pandas Examples . 213
5.3 Cached Objects Examples . 215
5.4 Custom Type Examples . 217
5.5 Menu Examples . 220
5.6 Macros and Excel Scripting . 223
5.7 Event Handler Examples . 226

Index 228

ii

CHAPTER

ONE

INTRODUCTION TO PYXLL

1.1 What is PyXLL?

PyXLL is an Excel Add-In that enables developers to extend Excel’s capabilities with Python code.

PyXLL makes Python a productive, flexible back-end for Excel worksheets, and lets you use the familiar Excel
user interface to interact with other parts of your information infrastructure.

With PyXLL, your Python code runs in Excel using any common Python distribution(e.g. Anaconda, Enthought’s
Canopy or any other CPython distribution from 2.3 to 3.10).

Because PyXLL runs your own full Python distribution you have access to all third party Python packages such as
NumPy, Pandas and SciPy and can call them from Excel.

Example use cases include:

• Calling existing Python code to perform calculations in Excel

• Data processing and analysis that’s too slow or cumbersome to do in VBA

• Pulling in data from external systems such as databases

• Querying large datasets to present summary level data in Excel

• Exposing internal or third party libraries to Excel users

Read more about PyXLL features on the features page.

1.2 How does it work?

PyXLL runs Python code in Excel according to the specifications in its config file, in which you configure how
Python is run and which modules PyXLL should load. When PyXLL starts up it loads those modules and exposes
certain functions that have been tagged with PyXLL decorators.

For example, an Excel user defined function (UDF) to compute the n th Fibonacci number can be written in Python
as follows:

from pyxll import xl_func

@xl_func
def fib(n):

"Naiive Fibonacci implementation."
if n == 0:

return 0
elif n == 1:

return 1
return fib(n-1) + fib(n-2)

1

PyXLL User Guide, Release 5.8.0

The xl_func decorated function fib is detected by PyXLL and exposed to Excel as a user-defined function.

Excel types are automatically converted to Python types based on an optional function signature. Where there is no
simple conversion (e.g. when returning an arbitrary class instance from a method) PyXLL stores the Python object
reference as a cell value in Excel. When another function is called with a reference to that cell PyXLL retrieves
the object and passes it to the method. PyXLL keeps track of cells referencing objects so that once an object is no
longer referenced by Excel it can be dereferenced in Python.

1.3 How does PyXLL compare with other packages?

There are many different Python packages for working with Excel.

The majority of these are for reading and writing Excel files (e.g. openpyxl and xlsxwriter).

PyXLL is very different to these other packages. Instead of just allowing you to read and write Excel files, PyXLL
integrates Python into Excel. This allows you to run Python inside of Excel to extend Excel’s capabilities with your
own Python code!

It is also possible to interact with Excel using a technology called COM. This allows a separate process to call into
Excel and script it. PyXLL is different as it actually embeds Python inside the Excel process, rather than calling
into it from an external process. This has huge implications for performance and means that PyXLL is by far the
fastest way of integrating Python and Excel.

By integrating Python into Excel, PyXLL not only achieves the best possible performance, but it is also able to
support many more features that are not possible using COM alone or only reading and writing files.

Just some of the features available in PyXLL that are not available in these other packages include:

• Fast, in-process, user defined functions

• Access to the full Excel Object Model for macros and more

• Real time data functions

• Custom ribbon toolbars and context menus

• Python user interfaces (PyQt, PySide etc) in Excel

• Use Excel’s multiple worker threads for Python functions

• Excel native asynchronous functions for IO bound tasks

PyXLL is used by large teams across many different industries and is designed to be able to be distributed to
non-technical, non-Python users easily. If this is something you need please contact us and we will be happy to
help.

For more information about other Python tools for Excel please see our blog post Tools for Working with Excel
and Python, or for a more detailed comparision of PyXLL and xlwings please see this FAQ article What is the
difference between PyXLL and xlwings.

All PyXLL subscriptions include technical support and upgrades to new releases.

If you’re not sure if PyXLL is right for your project or not, why not take advantage of our free 30 day trial to see
for yourself? If you need any help getting started then just let us know.

1.3. How does PyXLL compare with other packages? 2

https://openpyxl.readthedocs.io/en/stable/
https://xlsxwriter.readthedocs.io/
https://www.pyxll.com/blog/tools-for-working-with-excel-and-python/
https://www.pyxll.com/blog/tools-for-working-with-excel-and-python/
https://support.pyxll.com/hc/en-gb/articles/360042910613-What-is-the-difference-between-PyXLL-and-xlwings-
https://support.pyxll.com/hc/en-gb/articles/360042910613-What-is-the-difference-between-PyXLL-and-xlwings-

PyXLL User Guide, Release 5.8.0

1.4 Before You Start

Existing users might want to study What’s new in PyXLL 5. Those upgrading from earlier versions will should read
“Important notes for upgrading from previous versions”. If you prefer to learn by watching, perhaps you would
prefer our video guides and tutorials.

Note that you cannot mix 32-bit and 64-bit versions of Excel, Python and PyXLL – they all must be the same.

Install the add-in according to the installation instructions, making sure to update the configuration file if necessary.
For specific instructions about installing with Anaconda or Miniconda see Using PyXLL with Anaconda.

Once PyXLL is installed you will be able to try out the examples workbook that is included in the download. All
the code used in the examples workbook is also included in the download.

Note that any errors will be written to the log file, so if you are having difficulties always look in the log file to see
what’s going wrong, and if in doubt please contact us.

1.5 Next Steps

After you’ve installed PyXLL below is an exercise to show you how to write your first Python user-defined function.

1.5.1 Install PyXLL

To begin with follow the instructions for first time users to install PyXLL.

You can use PyXLL’s command line tool to install the PyXLL add-in into Excel:

>> pip install pyxll
>> pyxll install

1.5.2 Calling a Python Function in Excel

One of the main features of PyXLL is being able to call a Python function from a formula in an Excel workbook.

First start by creating a new Python module and writing a simple Python function. To expose that function to Excel
all you have to do is to apply the xl_func decorator to it.:

from pyxll import xl_func

@xl_func
def hello(name):

return "Hello, %s" % name

Save your module and edit the pyxll.cfg file again to add your new module to the list of modules to load and add
the directory containing your module to the pythonpath.

[PYXLL]
modules = <add the name of your new module here>

[PYTHON]
pythonpath = <add the folder containing your Python module here>

Go to the Addins menu in Excel and select PyXLL -> Reload. This causes PyXLL to reload the config and Python
modules, allowing new and updated modules to be discovered.

Now in a worksheet you will find you can type a formula using your new Python function.:

1.4. Before You Start 3

PyXLL User Guide, Release 5.8.0

=hello("me")

Using PyCharm, Eclipse or Visual Studio?

You can interactively debug Python code running in PyXLL with Eclipse, PyCharm, Visual Studio and other
IDEs by attaching them as a debugger to a running PyXLL. See our blog post Debugging Your Python Excel
Add-In for details.

If you make any mistakes in your code or your function returns an error you can check the log file to find out what
the error was, make the necessary changes to your code and reload PyXLL again.

1.5.3 Additional Resources

The documentation explains how to use all the features of PyXLL, and contains a complete API reference. PyXLL’s
features are also well demonstrated in the examples included in download. These are a good place to start to learn
more about what PyXLL can do.

More example code can be found on PyXLL’s GitHub page.

If there is anything specifically you’re trying to achieve and can’t find an example or help in the documentation
please contact us and we will do our best to help.

1.5. Next Steps 4

https://www.pyxll.com/blog/debugging-your-python-excel-add-in/
https://www.pyxll.com/blog/debugging-your-python-excel-add-in/
https://github.com/pyxll

CHAPTER

TWO

WHAT’S NEW IN PYXLL 5

Looking for an earlier version?

See 4.x/whatsnew for a detailed overview of the features added in PyXLL 4.

• New Features and Improvements

– Excel Tables

– RTD Generators

– Polars Types

– Easier Installation

– Custom Task Panes

– Plotting Integrations

– Serialized Cached Objects

– Entry Points

– Composite Ribbon Toolbars

– Auto-Rebinding

– Improved Cell Formatting

– Log Rolling

• Important notes for upgrading from previous versions

– Updated Software License Agreement

– Deep reloading is now enabled by default

– RTD functions no longer recalculate on open by default

– async_func has been replaced with schedule_call

5

PyXLL User Guide, Release 5.8.0

2.1 New Features and Improvements

2.1.1 Excel Tables

New in PyXLL 5.8

Read and write Excel tables from Python.

See Working with Tables for details.

2.1.2 RTD Generators

New in PyXLL 5.6

Writing an Excel RTD (Real Time Data) function is now as simple as writing a Python generator.

See RTD Generators for more details.

2.1.3 Polars Types

New in PyXLL 5.6

Polars DataFrames can be used as argument and return types, in the same way as pandas DataFrames.

See Polars DataFrames for more details.

2.1.4 Easier Installation

The PyXLL Excel add-in can now be installed and uninstalled via a new command line tool.

To install the PyXLL Excel add-in first use pip install to install the PyXLL wheel, eg

> pip install "pyxll >= 5.0.0"

Once the PyXLL wheel is installed the new pyxll command line tool can be used to install, configure and uninstall
the PyXLL Excel add-in, eg

> pyxll install

See PyXLL Command Line Tool.

2.1.5 Custom Task Panes

Task Panes are Excel windows that can be floating or docked as part of the Excel user interface.

PyXLL 5 adds the capability to write custom task panes in Python using any of the following Python UI toolkits:

• PySide2 and PySide6

• PyQt5 and PyQt5

• wxWindows

• tkinter

See Custom User Interfaces.

2.1. New Features and Improvements 6

PyXLL User Guide, Release 5.8.0

2.1.6 Plotting Integrations

PyXLL 5 adds integration with the following Python plotting and charting packages:

• matplotlib

• plotly

• bokeh

• altair

See Charts and Plotting.

2.1.7 Serialized Cached Objects

Cached objects can be serialized and saved as part of the Excel workbook. When a workbook containing saved
objects is opened they are deserialized and loaded into PyXLL’s object cache.

To specify that an object should be saved use the save parameter to the object return type.

See Saving Objects in the Workbook.

2.1.8 Entry Points

Python packages can now be loaded by PyXLL via setuptools’ entry-points.

This allows package developers to distribute functionality to other PyXLL users more easily as no additional PyXLL
configuration is required when installing a package with PyXLL entry points.

See Setuptools Entry Points.

2.1.9 Composite Ribbon Toolbars

The ribbon toolbar can now be composed of multiple xml files instead of a single file.

The ribbon setting can now be a list of files, which PyXLL will merge into a single ribbon.

This can be used by package authors who want to add a ribbon to their package via an entry point without needing
changes to be made to the main PyXLL configuration or ribbon xml file.

Images specified in the ribbon xml can now also be package resources as well as files.

2.1.10 Auto-Rebinding

When using the xl_func, xl_macro or xl_menu decorators outside of the usual module imports as PyXLL is
starting, PyXLL will automatically reflect these functions in Excel without needing to call rebind .

This simplifies working with adhoc worksheet functions from an interactive Python prompt in Excel, such as a
Jupyter notebook.

2.1. New Features and Improvements 7

PyXLL User Guide, Release 5.8.0

2.1.11 Improved Cell Formatting

• Cell formatting can now be applied to RTD functions as well as standard worksheet functions.

• The DataFrameFormatter can now do conditional formatting based on the values in the returned
DataFrame.

See Conditional Formatting.

2.1.12 Log Rolling

New in PyXLL 5.2

PyXLL can now automatically roll its log file when it reaches a certain size or after a specific interval has elapsed.
This avoids long running Excel processes from generating huge log files. Old log files can be kept for a while and
then later automatically cleaned up to avoid using excessive disk space.

See Logging for more details.

2.2 Important notes for upgrading from previous versions

PyXLL 5.0 contains some changes that may require you to make changes to your code and/or config before up-
grading from previous versions.

2.2.1 Updated Software License Agreement

The PyXLL software license agreement has been updated.

See terms-and-conditions or the software license agreement PDF file included in the PyXLL download for details.

2.2.2 Deep reloading is now enabled by default

This can be disabled for backwards compatibility

Deep reloading is now enabled by default. See Reloading and Rebinding for details about how PyXLL reloads
modules.

To disable deep reloading set the following in your PyXLL config file.

[PYXLL]
deep_reload = 0

2.2.3 RTD functions no longer recalculate on open by default

This can be disabled for backwards compatibility

In previous versions of PyXLL RTD functions were implicitly marked as needed to be recalulated when opening a
workbook. This was done to be consistent with earlier behaviour where RTD functions were registered as volatile.

As of PyXLL 5 RTD and standard functions behave in the same consistent way. That is, unless the
recalc_on_open=True is passed to xl_func, or defaulted via the config, RTD functions will not recalculate
and start ticking when a workbook is opened automatically.

To enable recalculation on open as the default for all RTD functions you may set the following in your config file.

[PYXLL]
recalc_rtd_on_open = 1

2.2. Important notes for upgrading from previous versions 8

PyXLL User Guide, Release 5.8.0

2.2.4 async_func has been replaced with schedule_call

If your code uses async_call you should replace it with the new schedule_call. The old async_call is still
available but has been deprecated and will log a warning if used.

2.2. Important notes for upgrading from previous versions 9

CHAPTER

THREE

USER GUIDE

New to PyXLL? Start with our First Time Users Guide!

3.1 Installing PyXLL

Before you start you will need to have Microsoft Excel for Windows installed, as well as a compatible version of
Python.

PyXLL works with any Python distribution, including Anaconda.

3.1.1 First Time Users

Installing PyXLL is as simple as running pip install pyxll followed by pyxll install.

Installing the PyXLL Excel Add-In

Note: You do not need a license key to start using the free PyXLL trial

To activate the free 30 day trial when the installer asks “Do you have a PyXLL license key?” enter “n”.

This will install PyXLL without a license key, activating the 30 day free trial automatically.

1. Install the PyXLL package using pip
Open a command line prompt and install the pyxll package using pip in the usual way.

If you are using conda or a virtual environment then you should activate it before doing this step.

>> pip install pyxll

2. Install the PyXLL Excel add-in
After pip installing pyxll is complete run the following command to download and install the PyXLL Excel
add-in:

>> pyxll install

• Follow the on screen instructions to complete the installation.

• When the installer asks “Have you already downloaded the PyXLL add-in?”, enter “n” and the installer
will download everything you need automatically.

If you prefer, you can download the PyXLL add-in from the download page, but please be sure to select
the correct Python and Excel options to get the right version of the PyXLL add-in.

10

https://support.pyxll.com/hc/en-gb/articles/360036317474-What-versions-of-Python-does-PyXLL-Support-
https://support.pyxll.com/hc/en-gb/articles/360036317474-What-versions-of-Python-does-PyXLL-Support-
../../../download.html

PyXLL User Guide, Release 5.8.0

• To activate the free 30 day trial when the installer asks “Do you have a PyXLL license key?” enter “n”.
This will install PyXLL without a license key, activating the 30 day free trial automatically.

Tip: If you have already downloaded PyXLL from the download page you can drag and drop the zip file
from Windows Explorer onto the command prompt when asked for the path!

3. Start Excel and try the examples
If the PyXLL add-in has been successfully installed then now when you start Excel it will be loaded auto-
matically.

In the folder you chose to install PyXLL into in step 2 you will find some examples, alongside the PyXLL
add-in and its configuration file.

If you can’t remember where you installed PyXLL use the pyxll status command to check (or check the
About option in the PyXLL menu in Excel).

The files you should find in the PyXLL installation folder include:

• The pyxll.cfg configuration file
This is the PyXLL configuration file and you will need to modify this to load your own Python modules.

The example configuration file installed includes documentation of the available settings. You can find
more information about PyXLL’s configuration options in the Configuring PyXLL section of the user
guide.

• An example Excel workbook and some example code in the ‘examples’ folder
In here you will find lots of examples to help you understand how to use the PyXLL add-in. All of
the examples are loaded in the default PyXLL configuration and so all you need to do is to open the
examples workbook to try them out.

After you have been through the examples feel free to remove them from your pyxll.cfg configuration
file.

• The log files
The default configuration sets the log path to a logs folder in the PyXLL installation folder. In this
logs folder you will find the PyXLL log file.

Any errors will be logged to this file, including the full Python stack trace for exceptions thrown when
running Excel worksheet functions and macros. This should be the first place you look if you are having
any problems.

Tip: You can enable debug logging for even more information about what’s going on by setting vebosity
= debug in the [LOG] section of your config file.

[LOG]
verbosity = debug

If you have any trouble using the installer please contact us to let us know. You can find additional instructions for
how to use the command line tool here.

It is also possible to install the PyXLL add-in manually as described in the next section.

3.1. Installing PyXLL 11

../../../download.html

PyXLL User Guide, Release 5.8.0

Next Steps

In the folder you’ve installed PyXLL into you will find an example workbook, examples.xlsx. This contains a
number of examples to demonstrate some of the features of PyXLL. You can find the Python code for these examples
in the examples folder in your PyXLL installation.

Try adding your own modules (.py files) and writing your own functions.

To add your own modules you will need to add them to the modules list that you can find in the pyxll.cfg file. Use
pyxll configure to quickly open the config file.

You can include modules from other folders too, not just the examples folder. Add your own folders to the python-
path setting in the pyxll.cfg file.

See Worksheet Functions for details of how you can expose your own Python functions to Excel as worksheet
functions, or browse the User Guide for information about the other features of PyXLL.

Common Issues and Troubleshooting

• Not able to use pip or the download fails because of a corporate firewall or proxy server
You can download and install PyXLL manually instead of using pip and pyxll install by following the
manual installation instructions.

• The ‘pyxll’ command isn’t recognised even after running ‘pip install pyxll’
This can be caused by your Python Scripts folder not being on your system path.

You can run the pyxll install command using python -m pyxll install instead, which works in
exactly the same way.

• Getting a ‘pythonXXX.dll not found’ error when starting Excel
This is caused by the version of Python being used being different from the version of Python the PyXLL
add-in was built for.

If you are using the command line installer, let that download the correct version for you by entering “n”
when asked if you have already downloaded PyXLL.

If you prefer to download the PyXLL add-in manually, download it again but be careful to select the correct
Python version on the download form.

• Troubleshooting other issues
Any errors will be written to the PyXLL log file when starting Excel. Check the log file for errors and
warnings to find out what is going wrong.

By default, the log file is located in the logs folder where you installed PyXLL. If you are not sure where
that is you can use the pyxll status command to find out, or check the About menu option in the PyXLL
menu in Excel.

If you are stuck you may find the answer you need by searching our FAQ, or contact us for more help.

3.1.2 PyXLL Command Line Tool

The PyXLL command line tool automates tasks around installing, updating and switching between different ver-
sions of PyXLL.

In order to use the PyXLL command line tool you first need to install it using pip:

>> pip install pyxll

If you are using a conda or virtual env you should activate the environment you want to use first.

To get the latest version of the PyXLL command line too you should update the package using pip:

3.1. Installing PyXLL 12

https://support.pyxll.com/hc/en-gb

PyXLL User Guide, Release 5.8.0

>> pip install --upgrade pyxll

The PyXLL wheel file is also included in the PyXLL download and may be installed from there.

After installing, the following commands are available:

• pyxll install

• pyxll configure

• pyxll status

• pyxll update

• pyxll activate

• pyxll install-certificate

• pyxll uninstall

pyxll install

The install command installs the PyXLL Excel add-in into Excel. It is necessary to either perform this step or to
install PyXLL manually before the PyXLL Excel add-in can be used.

>> pyxll install [OPTIONS] [PATH]

Options:
--version Version of PyXLL to install.
--debug / -d Output more information when running the command.

• Can be run with or without PATH.

– If PATH is not specified then either the latest version of PyXLL or the version specified will be down-
loaded. You will be prompted for some details in order to complete the download.

– If PATH is specified it can be a zip file downloaded from the download page, or a folder containing the
extracted downloaded zip file.

• If you already have PyXLL installed you will be warned but may continue.

– Any existing files that will be over-written will be backed up.

– You will be given the choice to change the location of the installation, allowing you to maintain multiple
copies of PyXLL.

– If installing in the same folder as your existing installation, your existing config file will be backed up
and a new one will be created with the default configuration.

• PyXLL will be configured automatically to use the active Python environment.

Further configuration can be performed by editing the pyxll.cfg file included in the installation or by using
the pyxll configure command.

3.1. Installing PyXLL 13

/download.html

PyXLL User Guide, Release 5.8.0

pyxll configure

The configure command opens the pyxll.cfg configuration file for the currently active PyXLL addin.

>> pyxll configure [OPTIONS]

Options:
--debug / -d Output more information when running the command.

• The default editor for the file type .cfg will be used to open the config file.

• PyXLL can have been installed using pyxll install or manually.

pyxll status

The status command checks the status of the active PyXLL installation and reports information about it.

>> pyxll status [OPTIONS]

Options:
--debug / -d Output more information when running the command.

If there are any issues with your current PyXLL installation this command may help identify what the problem is.

pyxll update

The update command updates your active PyXLL installation to the latest version of PyXLL.

>> pyxll update [OPTIONS] [PATH]

Options:
--version Version of PyXLL to update to.
--force For the update, even if the installed version is newer.
--debug / -d Output more information when running the command.

• Your existing pyxll.cfg file will not be modified.

• The previous pyxll.xll file will be backed up.

• Can be run with or without PATH.

– If PATH is not specified then either the latest version of PyXLL or the version specified will be down-
loaded. You will be prompted for some details in order to complete the download.

– If PATH is specified it can be a zip file downloaded from the download page, or a folder containing the
extracted downloaded zip file.

• If you want to try out a new version of PyXLL before upgrading use the pyxll install command and specify
a different folder to install it to. You can use the pyxll activate command to switch between installs easily.

3.1. Installing PyXLL 14

PyXLL User Guide, Release 5.8.0

pyxll activate

The activate command switches between different PyXLL installations quickly.

>> pyxll activate [OPTIONS] [PATH]

Options:
--debug / -d Output more information when running the command.
--non-interactive / -ni Don’t prompt the user for any input. [#ni]

• You can maintain multiple versions of PyXLL at the same time by installing PyXLL into different folders.

• This command selects which PyXLL add-in is active in Excel and does not change any files or configuration.

• Can be run with or without PATH.

– If PATH is not specified then it will look for pyxll.xll in the current working directory and activate that,
or prompt for a path if pyxll.xll is not found.

– If PATH is specified it should be a folder containing the PyXLL add-in to be activated.

pyxll install-certificate

Installs the PyXLL certificate into the ‘Trusted Publishers’ certificate store.

>> pyxll install-certificate [OPTIONS]

Options:
--debug / -d Output more information when running the command.

Installing the certificate is done as part of installing PyXLL but can also be done using this command (for example,
if installing the certificate failed during the initial install).

If the certificate can’t be installed then Excel may prompt the user that the add-in is unsafe or prevent it from
loading, depending on Excel’s Trust Center Settings.

pyxll uninstall

The uninstall command uninstalls the PyXLL Add-In from Excel.

>> pyxll uninstall

Options:
--force Uninstall without any confirmation.
--dry-run Log what would happen without actually uninstalling.
--debug / -d Output more information when running the command.

• This command only uninstalls the PyXLL add-in from Excel.

• No files will be deleted.

• To reinstall the same PyXLL add-in run pyxll activate.

[#ni]

The --non-interactive option is new in PyXLL 5.3.0 and enables pyxll activate to be used from a script
more easily for automated deployment of PyXLL environments.

3.1. Installing PyXLL 15

PyXLL User Guide, Release 5.8.0

3.1.3 Manual Installation

Before you start you will need to have Microsoft Excel for Windows installed, as well as a compatible version of
Python.

PyXLL works with any Python distribution, including Anaconda. For specific instructions about installing with
Anaconda or Miniconda see Using PyXLL with Anaconda.

Warning: These instructions are for manually installing the PyXLL Excel Add-In.

You may find it more convenient to use our command line tool for installing or upgrading PyXLL.

1. Download the PyXLL Zipfile

PyXLL comes as a zipfile you download from the download page. Select and download the correct version de-
pending on the versions of Python and Excel you want to use and agree to the terms and conditions.

Warning: Excel, Python and PyXLL all come in 64-bit and 32-bit versions.

The three products must be all 32-bit or all 64-bit.

2. Unpack the Zipfile

PyXLL is packaged as a zip file. Unpack the zip file where you want PyXLL to be installed.

There is no installer to run; you complete the installation in Excel after any necessary configuration changes.

3. Edit the Config File

You configure PyXLL by editing the pyxll.cfg file. Any text editor will do.

Set the executable setting in the PYTHON section of your config file to the full path to your Python executable.

pythonw.exe or python.exe

You may have noticed we’ve used pythonw.exe instead of python.exe.

The only difference between the two is that pythonw.exe doesn’t open a console window and so using that
means that we don’t see a console window is a Python subprocess is started (e.g. if using the subprocess or
multiprocessing Python packages).

If you prefer to use python.exe then that will work fine too.

[PYTHON]
executable = <path to your pythonw.exe>

PyXLL uses this setting to determine where the Python runtime libraries and Python packages are located.

You can determine where the executable for an installed Python interpreter with the command:

pythonw -c "import sys; print(sys.executable)"

While you have the pyxll.cfg file open take look through and see what other options are available.

You can find documentation for all available options in the Configuring PyXLL section of the user guide.

3.1. Installing PyXLL 16

https://support.pyxll.com/hc/en-gb/articles/360036317474-What-versions-of-Python-does-PyXLL-Support-
https://support.pyxll.com/hc/en-gb/articles/360036317474-What-versions-of-Python-does-PyXLL-Support-
../../../../download.html

PyXLL User Guide, Release 5.8.0

One important section of the config file is the LOG section. In there you can set where PyXLL should log to and
the logging level. If you are having trouble, set the log verbosity to debug to get more detailed logging.

[LOG]
verbosity = debug

Warning: The “;” character is used to comment out lines in the config file.

If a line starts with “;” then it will not be read by PyXLL.

4. Install the Add-In in Excel

DLL not found

If you get an error saying that Python is not installed or the Python dll can’t be found you may need to set the
Python executable in the config.

If setting the executable doesn’t resolve the problem then it’s possible your Python dll is in a non-standard
location. You can set the dll location in the config to tell PyXLL where to find it.

Once you’re happy with the configuration you can install the add-in in Excel by following the instructions below.

• Excel 2010 - 2019 / Office 365
Select the File menu in Excel and go to Options -> Add-Ins -> Manage Excel Addins and browse for
the folder you unpacked PyXLL to and select pyxll.xll.

• Excel 2007
Click the large circle at the top left of Excel and go to Options -> Add-Ins -> Manage Excel Addins
and browse for the folder you unpacked PyXLL to and select pyxll.xll.

• Excel 97 - 2003
Go to Tools -> Add-Ins -> Browse and locate pyxll.xll in the folder you unpacked the zip file to.

Warning: If Excel prompts you to ask if you want to copy the add-in to your local add-ins folder then select
No.

When PyXLL loads it expects its config file to be in the same folder as the add-in, and if Excel copies it to your
local add-ins folder then it won’t be able to find its config file.

3.1. Installing PyXLL 17

PyXLL User Guide, Release 5.8.0

5. Install the PyXLL Stubs Package (Optional)

If you are using a Python IDE that provides autocompletion or code checking or if you want to execute your
code outside Excel, say for testing purposes, you will need to install the pyxll module to avoid your code raising
ImportError exceptions.

In the downloaded zip file you will find a .whl file whose exact filename depends on the version of PyXLL. That’s
a Python Wheel containing a dummy pyxll module that you can import when testing without PyXLL. You can then
use code that depends on the pyxll module outside of Excel (e.g. when unit testing).

To install the wheel run the following command (substituting the actual wheel filename) from a command line:

> cd C:\Path\Where\You\Unpacked\PyXLL
> pip install "pyxll-wheel-filename.whl"

The real pyxll module is compiled into the pyxll.xll addin, and so is always available when your code is running
inside Excel.

If you are using a version of Python that doesn’t support pip you can instead unzip the .whl file into your Python
site-packages folder (the wheel file is simply a zip file with a different file extension).

Next Steps

Now you have PyXLL installed you can start adding your own Python code to Excel.

See Worksheet Functions for details of how you can expose your own Python functions to Excel as worksheet
functions, or browse the User Guide for information about the other features of PyXLL.

3.1. Installing PyXLL 18

PyXLL User Guide, Release 5.8.0

3.1.4 Using PyXLL with Anaconda

• What is Anaconda

• Which Anaconda Distribution to Choose

• Creating a Virtual Environment (optional)

• Installing PyXLL with Anaconda

• Switching Virtual Environments

What is Anaconda

Anaconda is an open source Python distribution that aims to simplify Package management and distribution.

The Anaconda distribution includes over a thousand Python packages as well as its own package and virtual envi-
ronment manager, Conda.

For users wanting just the package and virtual environment manager, Conda, without the large download and install
size of the full Anaconda distribution, there is also Miniconda.

Both Anaconda and Miniconda work well with PyXLL.

Which Anaconda Distribution to Choose

PyXLL will work fine with any Anaconda or Miniconda distribution for Windows. Note that PyXLL only supports
Microsoft Windows and will not work on macOS.

When downloading Anaconda you are given the choice between Python 2 and Python 3. All current Python versions
are supported by PyXLL, and so you are free to choose whichever version is right for you.

The Anaconda download page also offers the choice between a 64 bit installer and a 32 bit installed. The 64 bit
installer is the default selection, but which one you need depends on the version of Excel you are using.

It is not possible to use a 64 bit Python environment with the 32 bit version of Excel.

To determine which version of Excel you are using, in Excel go to File -> Account -> About.

If your Excel version does not inclide “64-bit” as shown above, you are using the 32 bit version of Excel and will
need to download the 32 bit version of Anaconda or Miniconda.

Creating a Virtual Environment (optional)

When using Anaconda or Miniconda it’s recommended to work within a virtual environment.

A virtual environment is a Python environment where you can install and update packages without modifying the
base Python install. You can have multiple environments at any time, so you could have a virtual environment
dedicated to everything you do in Excel with PyXLL without having to change any other environments you might
have for other tasks.

Virtual environments are created using the “conda create” command.

For example, to create a Python 3.7 environment for use with PyXLL named “pyxll”, start an Anaconda command
prompt and run the following:

3.1. Installing PyXLL 19

PyXLL User Guide, Release 5.8.0

>> conda create -n pyxll python=3.7

This will create a new Python 3.7 environment called “pyxll” (the name can be anything, it doesn’t have to be
pyxll).

You then have to activate that environment and install the packages you want:

>> activate env
>> conda install pandas

To see what environments you have, use “conda info –envs”. That will give you the path to where the new pyxll
environment has been created.

Installing PyXLL with Anaconda

PyXLL can be used with the Anaconda and Miniconda distributions. Use of either a virtual env or the base Python
environment is supported.

Follow the installation instructions to install PyXLL.

If you are using the PyXLL Command Line Tool then be sure to activate your conda environment first.

(base) >> activate env
(env) >> pip install pyxll
(env) >> pyxll install

If you are installing the PyXLL add-in manually then edit your pyxll.cfg file so that the executable setting references
the Python executable from your conda environment:

[PYTHON]
executable = C:\Program Files\Anaconda\envs\pyxll\pythonw.exe

To determine what Python executable to use, open an Anaconda Command prompt and activate the virtual envi-
ronment you want to use and type “where pythonw”:

(base) >> activate env
(env) >> where pythonw
C:/Program Files/Anaconda/envs/env/pythonw.exe

Switching Virtual Environments

To change the virtual environment that PyXLL uses from the one your originally configured, simply update your
pyxll.cfg config file to use the new virtual env and restart Excel.

Don’t forget that you may also need to install the pyxll stubs package in the new virtual environment if you require
code completion in your IDE, or if you are importing pyxll outside of Excel for any other reason.

3.2 Configuring PyXLL

Finding the config file

In PyXLL’s About dialog it displays the full path to the config file in use. Clicking on the path will open the
config file in your default editor.

The PyXLL config is available to your addin code at run-time via get_config.

3.2. Configuring PyXLL 20

PyXLL User Guide, Release 5.8.0

If you add your own sections to the config file they will be ignored by PyXLL but accessible to your code via
the config object.

If you’ve not installed the PyXLL addin yet, see Installing PyXLL.

The config file is a plain text file that should be kept in the same folder as the PyXLL addin .xll file, and should
have the same name as the addin but with a .cfg extension. In most cases it will simply be pyxll.cfg.

You can load the config file from an alternative location by setting the environment variable PYXLL_CONFIG_FILE
to the full path of the config file you wish to load before starting Excel.

Paths used in the config file may be absolute or relative. The latter (those not beginning with a slash) are interpreted
relative to the directory containing the config file.

Warning: Lines beginning with a semicolon are ignored as comments.

When setting a value in the configuration file, make sure there is no leading semicolon or your changes will
have no effect.
THIS WILL HAVE NO EFFECT
;setting = value

SETTING IS EFFECTIVE WITH NO SEMICOLON
setting = value

3.2.1 Python Settings

[PYTHON]
;
; Python settings
;
pythonpath = semi-colon or new line delimited list of directories
executable = full path to the Python executable (python.exe)
dll = full path to the Python dynamic link library (pythonXX.dll)
pythonhome = location of the standard Python libraries
ignore_environment = ignore environment variables when initializing Python

The Python settings determine which Python interpreter will be used, and some Python settings. Generally speak-
ing, when your system responds to the python command by running the correct interpreter there is usally no need
to alter this part of your configuration.

Sometimes you may want to specify options that differ from your system default; for example, when using a Python
virtual environment or if the Python you want to use is not installed as your system default Python.

• pythonpath
The pythonpath is a list of directories that Python will search in when importing modules.

When writing your own code to be used with PyXLL you will need to change this to include the
directories where that code can be imported from.

[PYTHON]
pythonpath =

c:\path\to\your\code
c:\path\to\some\more\of\your\code
.\relative\path\relative\to\config\file

• executable
If you want to use a different version of Python than your system default Python then setting this option
will allow you to do that.

3.2. Configuring PyXLL 21

PyXLL User Guide, Release 5.8.0

Note that the Python version (e.g. 2.7 or 3.5) must still match whichever Python version you selected
when downloading PyXLL, but this allows you to switch between different virtual environments or
different Python distributions.

PyXLL does not actually use the executable for anything, but this setting tells PyXLL where it can
expect to find the other files it needs as they will be installed relative to this file (e.g. the Python dll and
standard libraries).

[PYTHON]
executable = c:\path\to\your\python\installation\pythonw.exe

If you wish to set the executable globally outside of the config file, the environment variable
PYXLL_PYTHON_EXECUTABLE can be used. The value set in the config file is used in preference over
this environment variable.

• dll
PyXLL can usually locate the necessary Python dll without further help, but if your installation is non-
standard or you wish to use a specific dll for any reason then you can use this setting to indform PyXLL
of its location..

[PYTHON]
dll = c:\path\to\your\python\installation\pythonXX.dll

If you wish to set the dll globally outside of the config file, the environment variable
PYXLL_PYTHON_DLL can be used. The value set in the config file is used in preference over this envi-
ronment variable.

• pythonhome
The location of the standard libraries is usually determined by the location of the Python executable.

If for any reason the standard libraries are not installed relative to the chosen or default executable then
setting this option will tell PyXLL where to find them.

Usually if this setting is set at all it should be set to whatever sys.prefix evaluates to in a Python
prompt from the relevant interpreter.

[PYTHON]
pythonhome = c:\path\to\your\python\installation

If you wish to set the pythonhome globally outside of the config file, the environment variable
PYXLL_PYTHONHOME can be used. The value set in the config file is used in preference over this envi-
ronment variable.

• ignore_environment
New in PyXLL 3.5

When this option is set to any value, any standard Python environment variables such as PYTHONPATH
are ignored when initializing Python.

This is advisable so that any global environment variables that might conflict with the settings in the
pyll.cfg file do not affect how Python is initialized.

This must be set if using FINCAD, as FINCAD sets PYTHONPATH to it’s own internal Python dis-
tribution.

3.2. Configuring PyXLL 22

PyXLL User Guide, Release 5.8.0

3.2.2 PyXLL Settings

• Common Settings

• Reload Settings

• Abort Settings

• Array Settings

• Object Cache Settings

• NaN Return Settings

• AsyncIO Settings

• win32com Settings

• Error Handling

• RTD Settings

• CTP Settings

• Metadata

• Web Control Settings

• Other Settings

[PYXLL]
;
modules = comma or new line delimited list of python modules
ribbon = filename (or list of filenames) of a ribbon xml documents
developer_mode = 1 or 0 indicating whether or not to use the developer mode
name = name of the addin visible in Excel
category = default category for functions registered with :py:func:`xl_func`
external_config = paths or URLs of additional config files to load
optional_external_config = paths or URLs of additional config files to load
;
; reload settings
;
auto_reload = 1 or 0 to enable or disable automatic reloading (off by default)
auto_rebind = 1 or 0 to enable or disable automatic rebinding (on by default)
deep_reload = 1 or 0 to activate or deactivate the deep reload feature
deep_reload_include = modules and packages to include when reloading (only when deep_
→˓reload is set)
deep_reload_exclude = modules and packages to exclude when reloading (only when deep_
→˓reload is set)
deep_reload_include_site_packages = 1 or 0 to include site-packages when deep␣
→˓reloading
deep_reload_disable = 1 or 0 to disable all deep reloading functionality
;
; allow abort settings
;
allow_abort = 1 or 0 to set the default value for the allow_abort kwarg
abort_throttle_time = minimum time in seconds between checking abort status
abort_throttle_count = minimum number of calls to trace function between checking␣
→˓abort status
;
; array settings
;

(continues on next page)

3.2. Configuring PyXLL 23

PyXLL User Guide, Release 5.8.0

(continued from previous page)

auto_resize_arrays = 1 or 0 to enable automatic resizing of all array functions
always_use_2d_arrays = disable 1d array types and use ``[]`` to mean a 2d array
allow_auto_resizing_with_dynamic_arrays = Resize CSE array formulas even when dynamic␣
→˓arrays are available
disable_array_formula_check = Don't check whether an array formula is a CSE array␣
→˓formula or not
;
; object cache settings
;
get_cached_object_id = function to get the id to use for cached objects
clear_object_cache_on_reload = clear the object cache when reloading PyXLL
recalc_cached_objects_on_open = recalculate cached object functions when opening␣
→˓workbooks (default=1)
disable_loading_objects = disable loading cached objects saved in the workbook␣
→˓(default=0)
;
; nan, +inf and -inf return value settings
;
nan_value = value to use if NaN is returned by a Python function
posinf_value = value to use if +Inf is returned by a Python function
neginf_value = value to use if -Inf is returned by a Python function
;
; asyncio event loop settings
;
stop_event_loop_on_reload = 1 or 0 to stop the event loop when reloading PyXLL
start_event_loop = fully qualified function name if providing your own event loop
stop_event_loop = fully qualified function name to stop the event loop
;
; win32com settings
;
win32com_gen_path = path to use for win32com's __gen_path__ for generated wrapper␣
→˓classes
win32com_delete_gen_path = 1 or 0. If set, win32com's __gen_path__ folder will be␣
→˓deleted when starting
win32com_no_dynamic_dispatch = 1 or 0. If set, don't use win32com's dynamic wrappers
win32com_mutex_disable= 1 or 0. If set, don't use a global mutex to prevent␣
→˓concurrent access to gen_py wrappers.
win32com_mutex_timeout = Timeout in seconds for global mutex. Use -1 for an infinite␣
→˓timeout.
win32com_mutex_name = Name of the global mutex to prevent concurrent access to gen_py␣
→˓wrappers.
;
; error handling
;
error_handler = function for handling uncaught exceptions
error_cache_size = maximum number of exceptions to cache for failed function calls
;
; RTD settings
;
recalc_rtd_on_open = recalculate RTD functions when opening workbooks (default=1)
rtd_volatile_default = make RTD functions volatile by default (default=0)
;
; CTP settings
;
ctp_timer_interval = time in seconds between calls to CTPBridge.on_timer (default=0.1)
;

(continues on next page)

3.2. Configuring PyXLL 24

PyXLL User Guide, Release 5.8.0

(continued from previous page)

; metadata
;
metadata_custom_xml_namespace = namespace to use instead of the default for saved␣
→˓CustomXMLPart metadata
disable_saving_metadata = disable saving any metadata with the workbook
;
; other settings
;
disable_com_addin = 1 or 0 to disable the COM addin component of PyXLL
disable_recalc_on_open = 1 or 0 to disable recalculating any cells on the opening of␣
→˓a workbook.
disable_function_wizard_calc = 1 or 0 to disable calculating in the function wizard.
disable_replace_calc = 1 or 0 to disable calculating in the find and replace dialog.
ignore_entry_points = 1 or 0 to ignore entry points
quiet = 1 or 0 to disable all start up messages

Common Settings

• modules
When PyXLL starts or is reloaded this list of modules will be imported automatically.

Any code that is to be exposed to Excel should be added to this list, or imported from modules in this
list.

The interpreter will look for the modules usings its standard import mechanism. By adding folders
using the pythonpath setting, which can be set in the [PYTHON] config section, you can cause it to
look in specific folders where your software can be found.

• ribbon
If set, the ribbon setting should be the file name (or list of files) of custom ribbon user interface XML
file. The file names may be absolute paths or relative to the config file.

The XML files should conform to the Microsoft CustomUI XML schema (customUI.xsd) which may be
downloaded from Microsoft here https://www.microsoft.com/en-gb/download/details.aspx?id=1574.

If a list of files is given then all of those files will be loaded. Any tabs or groups with the same ids
found in the files will be merged.

See the Customizing the Ribbon chapter for more details.

• developer_mode
When the developer mode is active a PyXLL menu with a Reload menu item will be added to the
Addins toolbar in Excel.

If the developer mode is inactive then no menu items will be automatically created so the only ones
visible will be the ones declared in the imported user modules.

This setting defaults to off (0) if not set.

• name
The name setting, if set, changes the name of the addin as it appears in Excel.

When using this setting the addin in Excel is indistinguishable from any other addin, and there is no
reference to the fact it was written using PyXLL. If there are any menu items in the default menu, that
menu will take the name of the addin instead of the default ‘PyXLL’.

• category
The category setting changes the default category used when registering worksheet functions with
xl_func.

3.2. Configuring PyXLL 25

https://www.microsoft.com/en-gb/download/details.aspx?id=1574

PyXLL User Guide, Release 5.8.0

• external_config
This setting may be used to reference another config file (or files) located elsewhere, either as a relative
or absolute path or as a URL.

For example, if you want to have the main pyxll.cfg installed on users’ local PCs but want to control
the configuration via a shared file on the network you can use this to reference that external config file.

Multiple external config files can be used by setting this value to a list of file names (comma or newline
separated) or file patterns.

Values in external config files override what’s in the parent config file, apart from pythonpath, modules
and external_config which get appended to.

In addition to setting this in the config file, the environment variable
PYXLL_EXTERNAL_CONFIG_FILE can be used. Any external configs set by this environment
variable will be added to those specified in the config.

• optional_external_config
This setting is identical to external_config except that if a file does not exist or cannot be read then
a warning will be logged rather than an error.

This can be useful if specifying a user config in a standard location and your users may or may not have
that file.

Reload Settings

• auto_reload
When set PyXLL will detect when any Python modules, config or ribbon files have been modified and
automatically trigger a reload.

This setting defaults to off (0) if not set.

• auto_rebind
If any of the decorators xl_func, xl_macro or xl_menu are called after PyXLL has started PyXLL
can automatically re-create the function bindings in Excel. This is useful if dynamically importing
modules after PyXLL has started.

This setting defaults to on (1) if not set.

• deep_reload
Reloading PyXLL reloads all the modules listed in the modules config setting. When working on
more complex projects often you need to make changes not just to those modules, but also to modules
imported by those modules.

PyXLL keeps track of anything imported by the modules listed in the modules config setting (both
imported directly and indirectly) and when the deep_reload feature is enabled it will automatically
reload the module dependencies prior to reloading the main modules.

Standard Python modules and any packages containing C extensions are never reloaded.

It should be set to 1 to enable deep reloading 0 (the default) to disable it.

• deep_reload_include
Optional list of modules or packages to restrict reloading to when deep reloading is enabled.

If not set, everything excluding the standard Python library and packages with C extensions will be
considered for reloading.

This can be useful when working with code in only a few packages, and you don’t want to reload
everything each time you reload. For example, you might have a package like:

my_package \
- __init__.py
- business_logic.py

(continues on next page)

3.2. Configuring PyXLL 26

PyXLL User Guide, Release 5.8.0

(continued from previous page)

- data_objects.py
- pyxll_functions.py

In your config you would add my_package.pyxll_function to the modules to import, but when reloading
you would like to reload everything in my_package but not any other modules or packages that it might
also import (either directly or indirectly). By adding my_package to deep_reload_include the deep
reloading is restricted to only reload modules in that package (in this case, my_package.business_logic
and my_package.data_objects).

[PYXLL]
modules = my_package
deep_reload = 1
deep_reload_include = my_package

• deep_reload_exclude
Optional list of modules or packages to exclude from deep reloading when deep_reload is set.

If not set, only modules in the standard Python library and modules with C extensions will be ignored
when doing a deep reload.

Reloading Python modules and packages doesn’t work for all modules. For example, if a module
modifies the global state in another module when its imported, or if it contains a circular dependency,
then it can be problematic trying to reload it.

Because the deep_reload feature will attempt to reload all modules that have been imported, if you have
a module that cannot be reloaded and is causing problems you can add it to this list to be ignored.

Excluding a package (or sub-package) has the effect of also excluding anything within that package or
sub-package. For example, if there are modules a.b.x and a.b.y then excluding a.bwill also exclude
a.b.x and a.b.y.

deep_reload_exclude can be set when deep_reload_include is set to restrict the set of modules that
will be reloaded. For example, if there are modules ‘a.b and ‘a.b.c’, and everything in ‘a’ should be
reloaded except for ‘a.b.c’ then ‘a’ would be added to deep_reload_include and ‘a.b.c’ would be added
to deep_reload_exclude.

• deep_reload_include_site_packages
When deep_reload is set, any modules inside the site-packages folder will be ignored unless this option
is enabled.

This setting defaults to off (0) if not set.

• deep_reload_disable
Deep reloading works by installing an import hook that tracks the dependencies between imported mod-
ules. Even when deep_reload is turned off this import hook is enabled, as it is sometimes convenient
to be able to turn it on to do a deep reload without restarting Excel.

When deep_reload_disable is set to 1 then this import hook is not enabled and setting deep_reload
will have no effect. .. warning:: Changing this setting requires Excel to be restarted.

Abort Settings

• allow_abort (defaults to 0)
The allow_abort setting is optional and sets the default value for the allow_abort keyword argument
to the decorators xl_func, xl_macro and xl_menu.

It should be set to 1 for True or 0 for False. If unset the default is 0.

Using this feature enables a Python trace function which will impact the performance of Python code
while running a UDF. The exact performance impact will depend on what code is being run.

3.2. Configuring PyXLL 27

PyXLL User Guide, Release 5.8.0

• abort_throttle_time
When a UDF has been registered as abort-able, a trace function is used that gets called frequently as
the Python code is run by the Python interpreter.

To reduce the impact of the trace function Excel can be queried less often to see if the user has aborted
the function.

abort_throttle_time is the minimum time in seconds between checking Excel for the abort status.

• abort_throttle_count
When a UDF has been registered as abort-able, a trace function is used that gets called frequently as
the Python code is run by the Python interpreter.

To reduce the impact of the trace function Excel can be queried less often to see if the user has aborted
the function.

abort_throttle_count is the minimum number of call to the trace function between checking Excel for
the abort status.

Array Settings

• auto_resize_arrays (defaults to 0)
The auto_resize_arrays setting can be used to enable automatic resizing of array formulas for all array
function. It is equivalent to the auto_resize keyword argument to xl_func and applies to all array
functions that don’t explicitly set auto_resize.

It should be set to 1 for True or 0 for False (the default).

• always_use_2d_arrays (defaults to 0)
Before PyXLL 4.0, all array arguments and return types were 2d arrays (list of lists). The type suffix
[] was used to mean a 2d array type (e.g. a float[] argument would receive a list of lists).

Since PyXLL 4.0, 1d arrays have been added and [][] should now be used when a 2d array is required.
To make upgrading easier, this setting disables 1d arrays and any array types specified with [] will be
2d arrays as they were prior to version 4.

• allow_auto_resizing_with_dynamic_arrays (defaults to 1)
In 2019 Excel added a new “Dynamic Arrays” feature to Excel. This replaces the need for auto resized
arrays in PyXLL.

It is still possible to enter old-style Ctrl+Shift+Enter (CSE) arrays however, and these will continue to
be resized automatically by PyXLL if auto_resize is set for the function.

PyXLL’s auto-resizing can be disabled completely if Excel has the new dynamic arrays feature by
setting this option to 0.

New in PyXLL 4.4.

• disable_array_formula_check (defaults to 0)
PyXLL checks the formula of array functions to determine whether the function is an old style
Ctrl+Shift+Enter (CSE) formula or a new style dynamic array.

It uses this to determine whether or not to use its own auto-resizing for the the array function.

This check can be disabled by setting this to 1.

New in PyXLL 4.4.

3.2. Configuring PyXLL 28

PyXLL User Guide, Release 5.8.0

Object Cache Settings

• get_cached_object_id
When Python objects are returned from an Excel worksheet function and no suitable converter is found
(or the return type object is specified) the object is added to an internal object cache and a handle to
that cached object is returned.

The format of the cached object handle can be customized by setting get_cached_object_id to a custom
function, e,g

[PYXLL]
get_cached_object_id = module_name.get_custom_object_id

def get_custom_object_id(obj):
return "[Cached %s <0x%x>]" % (type(obj), id(obj))

The computed id must be unique as it’s used when passing these objects to other functions, which
retrieves them from the cache by the id.

• clear_object_cache_on_reload
Clear the object cache when reloading the PyXLL add-in.

Defaults to 1, but if using cached objects that are instances of classes that aren’t reloaded then this can
be set to 0 to avoid having to recreate them when reloading.

• recalc_cached_objects_on_open
If set, default all functions that return cached objects as needing to be recalculated when opening a
workbook.

This is the equivalent to setting recalc_on_open=True in the xl_func decorator. Disabling it does
not prevent cells that have already been saved with this flag set from be calculated when a workbook
opens. For that, set disable_recalc_on_open=1 in your config.

This setting can be overridden on specific functions by setting recalc_on_open in the xl_func dec-
orator.

Defaults to 0.

See Recalculating On Open.

• disable_loading_objects
If set, any cached objects saved as part of a workbook will be ignored when opening the workbook.

Defaults to 0.

See Saving Objects in the Workbook.

NaN Return Settings

New in PyXLL 5.5.

Values to use when NaN, +Inf and -Inf are returned from Python to Excel.

These can be overridden for individual functions when using xl_func, xl_macro or XLCell.options, but if not
specified the values set in the config file will be used instead.

Valid values for these settings are:

3.2. Configuring PyXLL 29

PyXLL User Guide, Release 5.8.0

#NULL!
#DIV/0!
#VALUE!
#REF!
#NAME!
#NUM!
#N/A
INF
None

Or any numeric or string value can also be used.

• nan_value
Value to use if NaN is returned from Python to Excel. Defaults to #NUM!

• posinf_value
Value to use if +Inf is returned from Python to Excel. Defaults to +INF.

• neginf_value
Value to use if -Inf is returned from Python to Excel. Defaults to -INF.

AsyncIO Settings

• stop_event_loop_on_reload
If set to ‘1’, the asyncio Event Loop used for async user defined functions and RTD methods will be
stopped when PyXLL is reloaded.

See Asynchronous Functions.

New in PyXLL 4.2.0.

• start_event_loop
Used to provide an alternative implementation of the asyncio event loop used by PyXLL.

May be set to the fully qualified name of a function that takes no arguments and returns a started
asyncio.AbstractEventLoop.

If this option is set then stop_event_loop should also be set.

See Asynchronous Functions.

New in PyXLL 4.2.0.

• stop_event_loop
Used to provide an alternative implementation of the asyncio event loop used by PyXLL.

May be set to the fully qualified name of a function that stops the event loop started by the function
specified by the option start_event_loop.

If this option is set then start_event_loop should also be set.

See Asynchronous Functions.

New in PyXLL 4.2.0.

3.2. Configuring PyXLL 30

PyXLL User Guide, Release 5.8.0

win32com Settings

• win32com_gen_path
This sets the win32com.__gen_path__ path used for win32com’s generated wrapper classes.

By default win32com uses the user’s Temp folder, but this is shared between all Python sessions, not
just PyXLL. If this becomes corrupted or updated by an external Python script then it can stop the
win32com package from functioning correctly, and setting it to a folder specifically for PyXLL can
avoid that problem.

• win32com_delete_gen_path
If set the win32com.__gen_path__ folder used for generated wrapper classes will be deleted when
PyXLL starts.

This is not usually necessary as setting win32com_gen_path will ensure that no other Python code
will use the same generated wrapper classes, however it can be set if you are experiencing problems
with the wrapper classes becoming corrupted or invalid.

If using this option you will also want to set win32com_gen_path so the wrapper classes are created
somewhere other than the default location. The folder referenced by win32com_gen_path is the one
that will be deleted.

Care should be taken to ensure that there is nothing in the folder you do not want to be deleted before
setting this option, although the folder can be recovered from the recycle bin.

• win32com_no_dynamic_dispatch
When returning a COM object using the win32com package, PyXLL will attempt to use a static wrapper
generated by win32com. If that fails and this setting is not set then it will fallback to using a dynamic
dispatch wrapper.

Dynamic wrappers are suitable in most cases and behave in the same way as the static wrappers, but the
win32com.client.constants set of constants only contains constants included by static wrappers, and so
falling back to dynamic dispatch can result in missing constants.

• win32com_mutex_disable
PyXLL uses a global mutex to prevent multiple Excel sessions from attempting to create the win32com
wrapper modules at the same time when calling xl_app.

This is to prevent multiple Excel sessions from creating the wrappers at the same time and overwriting
each other, leading to corrupt wrapper files.

This can be disabled by setting this setting to 1 but if you think you need to disable this then please
contact PyXLL support before doing so.

New in PyXLL 5.1.

• win32com_mutex_timeout
This setting is only provided as a precaution and you should contact PyXLL support if you think you
need to change it.

New in PyXLL 5.1.

• win32com_mutex_name
This setting is only provided as a precaution and you should contact PyXLL support if you think you
need to change it.

New in PyXLL 5.1.

3.2. Configuring PyXLL 31

PyXLL User Guide, Release 5.8.0

Error Handling

• error_handler
If a function raises an uncaught exception, the error handler specified here will be called and the result
of the error handler is returned to Excel.

If not set, uncaught exceptions are returned to Excel as error codes.

See Error Handling.

• error_cache_size
If a worksheet function raises an uncaught exception it is cached for retrieval via the get_last_error
function.

This setting sets the maximum number of exceptions that will be cached. The least recently raised
exceptions are removed from the cache when the number of cached exceptions exceeds this limit.

The default is 500.

RTD Settings

• recalc_rtd_on_open
Default all RTD functions as needing to be recalculated when opening a workbook.

This is the equivalent to setting recalc_on_open=True in the xl_func decorator. Disabling it does
not prevent cells that have already been saved with this flag set from be calculated when a workbook
opens. For that, set disable_recalc_on_open=1 in your config.

This setting can be overridden on specific functions by setting recalc_on_open in the xl_func dec-
orator.

Defaults to 1.

See Recalculating On Open.

• rtd_volatile_default
Make all RTD functions volatile by default. This restores the behaviour prior to PyXLL 4.5.0.

When enabled RTD functions are volatile so they will be calculated when opening a workbook, but the
wrapped Python function will only be called if the arguments to the function are actually changed.

Usually this should be left disabled as RTD functions are now calculated when the workbook opens
using the Recalculating On Open feature of PyXLL instead.

Defaults to 0.

CTP Settings

• ctp_timer_interval
Time in seconds between calls to CTPBridgeBase.on_timer.

The CTP bridge classes are what integrate the Python UI toolkit with the Excel Windows message loop.
They use on_timer to poll their own message queues. If you are finding the panel is not responsive
enough you can reduce the timer interval with this setting.

This can also be set for each CTP by passing timer_interval to :py:func`create_ctp`.

New in PyXLL 5.1

3.2. Configuring PyXLL 32

PyXLL User Guide, Release 5.8.0

Metadata

• metadata_custom_xml_namespace
Custom metadata is saved in order to support certain features of PyXLL such as recalculating cells
when a workbook opens.

This is saved in the workbook as a CustomXMLPart using an XML namespace specific to the PyXLL
add-in so as not to conflict with data saved by other add-ins. If you have specified a name for your
add-in using the name setting that will be used to avoid conflict with any other PyXLL add-ins you may
have loaded.

If you prefer to specify the namespace to use instead of having PyXLL use it’s own namespace you can
do so by setting this option.

[PYXLL]
metadata_custom_xml_namespace = urn:your_name:metadata

• disable_saving_metadata
Set this option to disable writing any metadata.

Note that this will affect all PyXLL features that require metadata such as recalculating on open, as
well as formatting dynamic arrays.

The default is 0 (not disabled).

Web Control Settings

New in PyXLL 5.5

PyXLL can make web requests to fetch files from web servers instead of using a file path. For example, the
license_file, external_config and startup_script settings can all use a URL instead of a path to down-
load a file. PyXLL will also attempt to ping a license server and download the latest license information, if possible.

The web control used to make these requests can be configured using the options in this section.

Usually these options should not be set as PyXLL will detect the correct settings automatically.

• webclient_disable_autoproxy
PyXLL will attempt to detect your proxy settings automatically if you have AutoProxy configured.

This can be disabled by setting this option to 1.

• webclient_autoproxy_logon_if_challenged
If your proxy server requires authentication PyXLL will attempt to auto-logon if challenged.

This can be disabled by setting this option to 0.

• webclient_proxy
If you connect to the internet through a manually configured proxy server, and PyXLL is not detecting
that proxy server automatically, this can be used to set the proxy server.

• webclient_proxy_bypass
If you connect to the internet through a proxy, and you are manually specifying the proxy server using
the webclient_proxy setting above, you can use this setting to configure some sites to bypass the
proxy server.

The proxy server will not be used for addresses beginning with entries in this list. Use semicolons (;)
to separate entries.

• webclient_disable_autologon
If connecting to an Intranet site or trusted URL that supports auto-logon PyXLL can try to authenticate
automatically.

By default, auto-logon is only used for Intranet requests or Trusted Sites. This can be overridden using
the webclient_autologon_security_level setting.

3.2. Configuring PyXLL 33

PyXLL User Guide, Release 5.8.0

Auto-logon can be disabled by setting this option to 1.

• webclient_autologon_security_level
This can be set to low, medium or high and determines what type of sites can be sent credentials for
authentication.

– low: Default credentials may be sent to all servers.

– medium: Default credentials may be sent for Intranet requests.

– high: Default credentials cannot be used for authentication.

By default, auto-logon is used for Intranet requests and Trusted Sites and it is recommended in most
cases that this setting is not set.

Other Settings

• startup_script
Path or URL of a batch or Powershell script to run when Excel starts.

This script will be run when Excel starts, but before Python is initialized. This is so that the script can
install anything required by the add-in on demand when Excel runs.

See Startup Script.

• disable_com_addin
PyXLL is packaged as a single Excel addin (the pyxll.xll file), but it actually implements both a standard
XLL addin and COM addin in the same file.

Setting disable_com_addin to 1 stops the COM addin from being used.

The COM addin is used for ribbon customizations and RTD functions and if disabled these features
will not be available.

• disable_recalc_on_open
Disable any automatic recalculations when a workbook is opened that would otherwise be caused by
the Recalculating On Open feature.

This does not stop Excel from calculating anything else, such as volatile functions or other dirty cells
in the saved workbook.

See Recalculating On Open.

• disable_function_wizard_calc
If set, the default behaviour of functions registered with xl_func is for them to not calculate when the
Excel function wizard is active.

This can be overriden using the disable_function_wizard_calc argument to xl_func.

New in PyXLL 5.8.0

• disable_replace_calc
If set, the default behaviour of functions registered with xl_func is for them to not calculate when the
Excel find and replace dialog is active.

This can be overriden using the disable_replace_calc argument to xl_func.

New in PyXLL 5.8.0

• ignore_entry_points
If your Python packages are on a network drive it can be slow to look for entry points, which may result
in slow start times for Excel.

This setting stops PyXLL from looking for entry points.

See Setuptools Entry Points.

3.2. Configuring PyXLL 34

PyXLL User Guide, Release 5.8.0

• quiet
The quiet setting is for use in enterprise settings where the end user has no knowledge that the functions
they’re provided with are via a PyXLL addin.

When set PyXLL won’t raise any message boxes when starting up, even if errors occur and the addin
can’t load correctly. Instead, all errors are written to the log file.

3.2.3 License Key

[LICENSE]
key = license key
file = path to shared license key file

If you have a PyXLL license key you should set it in [LICENSE] section of the config file.

The license key may be embedded in the config as a plain text string, or it can be referenced as an external file
containing the license key. This can be useful for group licenses so that the license key can be managed centrally
without having to update each user’s configuration when it is renewed.

• key
Plain text license key as provided when you purchased PyXLL.

This does not need to be set if you are setting file.

The environment variable PYXLL_LICENSE_KEY can be used instead of setting this in the config file.

• file
Path or URL of a plain text file containing the license key as provided when you purchased PyXLL.

The file may contain comment lines starting with #.

This does not need to be set if you are setting key.

The environment variable PYXLL_LICENSE_FILE can be used instead of setting this in the config file.

3.2.4 Logging

PyXLL redirects all stdout and stderr to a log file. All logging is done using the standard logging python module.

The [LOG] section of the config file determines where logging information is redirected to, and the verbosity of
the information logged.

The Configuration Variables are useful when configuring the log file as they allow including the current date,
process id, and other variables in the log file name and/or path.

[LOG]
path = directory of where to write the log file
file = filename of the log file
verbosity = logging level (debug, info, warning, error or critical)
format = format string
max_size = maximum size the log file can get to before rolling to a new file.
roll_interval = period before the log file will be rolled and a new log will be␣
→˓started.
backup_count = number of old log files to keep.
encoding = encoding to use when writing the logfile (defaults to 'utf-8')

• path
Path where the log file will be written to.

This may include substitution variables as listed above, e.g.

3.2. Configuring PyXLL 35

PyXLL User Guide, Release 5.8.0

[LOG]
path = C:/Temp/pyxll-logs-%(date)s

• file
Filename of the log file.

This may include substitution variables as listed above, e.g.

[LOG]
file = pyxll-log-%(pid)s-%(xlversion)s-%(date)s.log

• verbosity
The logging verbosity can be used to filter out or show warning and errors. It sets the log level for the
root logger in the logging module, as well as setting PyXLL’s internal log level.

It may be set to any of the following

– debug (most verbose level, show all log messages including debugging messages)

– info

– warning

– error

– critical (least verbose level, only show the most critical errors)

If you are having any problems with PyXLL it’s recommended to set the log verbosity to debug as that
will give a lot more information about what PyXLL is doing.

• format
The format string is used by the logging module to format any log messages. An example format string
is:

[LOG]
format = "%(asctime)s - %(name)s - %(levelname)s - %(message)s"

For more information about log formatting, please see the logging module documentation from the
Python standard library.

• max_size1

Maximum size the log file is allowed to grow to.

Once the log file goes over this size it will be renamed to add a timestamp to the file and a new log file
will be started.

The size can be in Kb, Mb or Gb, for example to set it to 100Mb use max_size = 100Mb.

If zero, the log file will be allowed to grow indefinitely.

• roll_interval1

If set the log file will be rolled periodically.

This setting can be used alongside max_size and if both are set the log will be rolled either either the
roll period is reached or the file size goes over the maximum allowed size.

The interval can be any of:

– a number of days, hours, minutes or seconds using the form Nd for days (eg 7d), Nm, and Ns
respectively.

– midnight to indicate the log should be rolled after midnight.

– W0-6 to roll on a specific day of the week, eg W0 for Sunday and W6 for Saturday.
1 Log rolling is new in PyXLL 5.2.

3.2. Configuring PyXLL 36

PyXLL User Guide, Release 5.8.0

• roll_backoff_intervalPage 37, 2

If rolling the log file fails a retry won’t be attempted for a short period of time. The default time between
retries is 5 minutes.

The interval can be number of days, hours, minutes or seconds using the form Nd for days (eg 7d), Nm,
and Ns respectively.

• backup_countPage 36, 1

The number of backup log files to keep after rolling the log.

If set, only the last N rolled log files will be kept.

Instead of setting a fixed number a period can be specified, eg 7d to keep log files for 7 days.

• encoding
Encoding to use when writing the log file.

Defaults to ‘utf-8’.

New in PyXLL 4.2.0.

3.2.5 Warnings

The Python warnings package is part of the Python standard library and used to alert the user of a problem.

Typically these warnings are logged to the log file, but the warnings module can be configured to elevate these
warnings to exceptions or to ignore them completely.

For full details of the warnings package please see the Python documentation here
`https://docs.python.org/3/library/warnings.html`_.

The warnings package can be configured in the [LOG] section of the PyXLL config file with the following options.

• capture_warnings
Write warnings to the log file.

If this is set to 0 then warnings will not be captured and written to the log file.

Defaults to 1.

• warnings_filters
Warnings filters to control whether warnings are ignored, dispayed, or turned into errors.

Multiple warning filters can be configured on multiple lines.

Individual warnings filters are specified as a sequence of fields separated by colons:

action:message:category:module:line

Example:

[LOG]
warnings_filters =

default::DeprecationWarning:__main__
ignore::DeprecationWarning
ignore::PendingDeprecationWarning
ignore::ImportWarning
ignore::ResourceWarning

2 New in PyXLL 5.6.

3.2. Configuring PyXLL 37

PyXLL User Guide, Release 5.8.0

3.2.6 Configuration Variables

PyXLL creates some configuration substitution variables that can be used in any config values.

Variable substitution in the config file follows the same format as Python’s configparser module, which is
%(name)s, where name is the variable name.

For example, including today’s date in the log file name would be specified as:

[LOG]
file = pyxll-log-%(date)s.txt

The following sustitution variables are available:

Substitution Variable Description
pid Process id
date Current date in YYYYMMDD format
time3 Current time in HHMMSS format
xl_version1 Excel version
py_version2 Python version
pyxll_version2 PyXLL version
xll_path3 Full path of the pyxll.xll add-in
xll_dir3 Directory containing the pyxll.xll add-in
cfg_path3 Full path of the config file being processed
cfg_dir3 Directory containing the config file being processed
basecfg_path34 Full path of the base config file
basecfg_dir34 Directory containing the base config file

In addition to these standard substition variables, environment variables can also be used as substitution variables
in the config. See Environment Variables for more details about using environment variables in the config file.

3.2.7 Environment Variables

Config values may include references to environment variables. To substitute an environment variable into your
value use

%(ENVVAR_NAME)s

When the variable has not been set, (since PyXLL 4.1) you can set a default value using the following format

%(ENVVAR_NAME:default_value)s

For example:

[LOG]
path = %(TEMP:./logs)s
file = %(LOG_FILE:pyxll.log)s

It’s possible to set environment variables in the [ENVIRONMENT] section of the config file.

[ENVIRONMENT]
NAME = VALUE

For each environment variable you would like set, add a line to the [ENVIRONMENT] section.
3 The options time, xll_path, xll_dir, cfg_path, cfg_dir, basecfg_path, and basecfg_dir are new in PyXLL 5.6.
1 xlversion was renamed to xl_version in PyXLL 5.2 but both forms will continue to work.
2 Both the py_version and pyxll_version substitution variables are new in PyXLL 5.2.
4 The base config is the first config file loaded by the add-in. This can be different from the config file being processed if the base config

specifies additional config files using the external_config option.

3.2. Configuring PyXLL 38

PyXLL User Guide, Release 5.8.0

3.2.8 Startup Script

New in PyXLL 4.4.0

• Introduction

• Example

• Script Commands

Introduction

The startup_script option can be used to run a batch or Powershell script when Excel starts, and again each
time PyXLL is reloaded.

This can be useful for ensuring the Python environment is installed correctly and any Python packages are up to
date, or for any other tasks you need to perform when starting Excel.

The script runs before Python is initialized, and can therefore be used to set up a Python environment if one doesn’t
already exist. The PyXLL config can be manipulated from the startup script so any settings such as the modules
list, pythonpath or even the Python executable can be set on startup rather than being fixed in the pyxll.cfg file.

The startup script can be a local file, a file on a network drive, or even a URL. Using a network drive or a URL
can be a good option when deploying PyXLL to multiple users where you want to have control over what’s run on
startup without having to update each PC.

Batch files (.bat or .cmd) and Powershell files (.ps1) are supported. Script files must use one of these file extensions.

The script is run with the current working directory (CWD) set to the same folder as the PyXLL add-in itself, and
so relative paths can be used relative to the xll file.

If successful the script should exit with exit code 0. Any other exit code will be interpreted as the script not having
been run successfully by PyXLL.

See also Using a startup script to install and update Python code.

Example

A startup script could be used to download a Python environment and configure PyXLL.

REM startup-script.bat
@ECHO OFF

REM If the Python env already exists no need to download it
IF EXIST ./python-env-xx GOTO SKIPDOWNLOAD

REM Download and unpack a Python environment to ./python-env-xx/
wget https://intranet/python/python-env-xx.tar.gz
tar -xzf python-env-xx.tar.gz --directory python-env-xx
:SKIPDOWNLOAD

REM Update the PyXLL settings with the executable
ECHO pyxll-set-option PYTHON executable ./python-venv-xx/pythonw.exe

The script is configured in the pyxll.cfg file, and could be on a remote network drive or web server.

[PYXLL]
startup_script = https://intranet/pyxll/startup-script.bat

3.2. Configuring PyXLL 39

PyXLL User Guide, Release 5.8.0

Script Commands

When PyXLL runs the startup script (either a batch or Powershell script) it monitors the stdout of the script for
special commands. These commands can be used by your script to get information from PyXLL, update settings,
and give the user information.

To call one of the commands from your script you echo it to the stdout. For example, the command
pyxll-set-option can be used to set one of PyXLL’s configuration options. In a batch file, to set the LOG/
verbosity setting to debug it would be called as follows:

ECHO pyxll-set-option LOG verbosity debug

Calling the command from Powershell is the same:

Echo "pyxll-set-option LOG verbosity debug"

Some commands return results back to the script. They do this by writing the result to the script’s stdin. To read
the result from a command that returns something you need to read it from the stdin into a variable. The command
pyxll-get-command is one that returns a result and can be used from a batch file as follows:

ECHO pyxll-get-option PYTHON executable
SET /p EXECUTABLE=
REM The PYTHON executable setting is now in the variable %EXECUTABLE%

Or in Powershell it would look like:

Echo "pyxll-get-option PYTHON executable"
$executable = Read-Host

Below is a list of the available commands.

• pyxll-get-option

• pyxll-set-option

• pyxll-unset-option

• pyxll-set-progress

• pyxll-show-progress

• pyxll-set-progress-status

• pyxll-set-progress-title

• pyxll-set-progress-caption

• pyxll-get-version

• pyxll-get-python-version

• pyxll-get-arch

• pyxll-get-pid

• pyxll-restart-excel

• pyxll-set-error-message

3.2. Configuring PyXLL 40

PyXLL User Guide, Release 5.8.0

pyxll-get-option

Gets the value of any option from the config.

Takes two arguments, SECTION and OPTION, and returns the option’s value.

• Batch File

ECHO pyxll-get-option SECTION OPTION
SET /p VALUE=

• Powershell

Echo "pyxll-get-option SECTION OPTION"
$value = Read-Host

If used on a multi-line option (e.g. PYTHON/modules and PYTHON/pythonpath) the value returned will be a list
of value delimited by the separator documented for the setting.

pyxll-set-option

Sets a config option.

Takes three arguments, SECTION, OPTION and VALUE. Doesn’t return a value.

• Batch File

ECHO pyxll-set-option SECTION OPTION VALUE

• Powershell

Echo "pyxll-set-option SECTION OPTION VALUE"

When used with multi-line options (e.g. PYTHON/modules and PYTHON/pythonpath) this command appends to
the list of values. Use pyxll-unset-option to clear the list first if you want to overwrite any current value.

pyxll-unset-option

Unsets the specified option.

Takes two arguments, SECTION and OPTION. Doesn’t return value.

• Batch File

ECHO pyxll-unset-option SECTION OPTION

• Powershell

Echo "pyxll-unset-option SECTION OPTION"

3.2. Configuring PyXLL 41

PyXLL User Guide, Release 5.8.0

pyxll-set-progress

Display or update a progress indicator dialog to inform the user of the current progress.

This is useful for potentially long running start up scripts, such as when downloading files from a network location
or installing a large number of files.

Takes one argument, the current progress as a number between 0 and 100. Doesn’t return a value.

• Batch File

ECHO pyxll-set-progress PERCENT_COMPLETE

• Powershell

Echo "pyxll-set-progress PERCENT_COMPLETE"

pyxll-show-progress

Displays the progress indicator without setting the current progress.

This shows the progress indicator in ‘marquee’ style where it animates continuously rather than showing any spe-
cific progress.

If the progress indicator is already shown this command does nothing.

Takes no arguments and doesn’t return a value.

• Batch File

ECHO pyxll-show-progress

• Powershell

Echo "pyxll-show-progress"

pyxll-set-progress-status

Sets the status text of the progress indicator dialog.

This does not show the progress indicator if it is not already shown. Use pyxll-show-progress or
pyxll-set-progress to show the progress indicator.

Takes one argument, STATUS, and doesn’t return a value.

• Batch File

ECHO pyxll-set-progress-status STATUS

• Powershell

Echo "pyxll-set-progress-status STATUS"

3.2. Configuring PyXLL 42

PyXLL User Guide, Release 5.8.0

pyxll-set-progress-title

Sets the title of the progress indicator dialog.

This does not show the progress indicator if it is not already shown. Use pyxll-show-progress or
pyxll-set-progress to show the progress indicator.

Takes one argument, TITLE, and doesn’t return a value.

• Batch File

ECHO pyxll-set-progress-title TITLE

• Powershell

Echo "pyxll-set-progress-title TITLE"

pyxll-set-progress-caption

Sets the caption text of the progress indicator dialog.

This does not show the progress indicator if it is not already shown. Use pyxll-show-progress or
pyxll-set-progress to show the progress indicator.

Takes one argument, CAPTION, and doesn’t return a value.

• Batch File

ECHO pyxll-set-progress-caption CAPTION

• Powershell

Echo "pyxll-set-progress-caption CAPTION"

pyxll-get-version

Gets the version of the installed PyXLL add-in.

Takes no arguments and returns the version.

• Batch File

ECHO pyxll-get-version
SET /p VERSION=

• Powershell

Echo "pyxll-get-version"
$version = Read-Host

3.2. Configuring PyXLL 43

PyXLL User Guide, Release 5.8.0

pyxll-get-python-version

Gets the version of Python the installed PyXLL add-in is compatible with in the form
PY_MAJOR_VERSION.PY_MINOR_VERSION.

Takes no arguments and returns the Python version.

• Batch File

ECHO pyxll-get-python-version
SET /p VERSION=

• Powershell

Echo "pyxll-get-python-version"
$version = Read-Host

pyxll-get-arch

Gets the machine architecture of the Excel process and PyXLL add-in.

Takes no arguments and returns either ‘x86’ for 32 bit or ‘x64’ for a 64 bit.

• Batch File

ECHO pyxll-get-arch
SET /p ARCH=

• Powershell

Echo "pyxll-get-arch"
$arch = Read-Host

pyxll-get-pid

Gets the process id of the Excel process.

Takes no arguments and the process id.

• Batch File

ECHO pyxll-get-pid
SET /p PID=

• Powershell

Echo "pyxll-get-pid"
$pid = Read-Host

3.2. Configuring PyXLL 44

PyXLL User Guide, Release 5.8.0

pyxll-restart-excel

Displays a message box to the user informing them Excel needs to restart. If the user selects ‘Ok’ then Excel will
restart. The user can cancel this and if they do so the script will be terminated.

This can be used if your script needs to install something that would require Excel to be restarted. When Excel
restarts your script will be run again and so you should ensure that it doesn’t repeatedly request to restart Excel.

One possible use case is if you want to upgrade the PyXLL add-in itself. You can rename the existing one (it can’t
be deleted while Excel is using it, but it can be renamed) and copy a new one in its place and then request to restart
Excel.

Takes one optional argument, MESSAGE, which will be disaplyed to the user. Doesn’t return a result.

• Batch File

ECHO pyxll-restart-excel MESSAGE

• Powershell

Echo "pyxll-restart-excel MESSAGE"

pyxll-set-error-message

New in PyXLL 5.6

Sets the error message to be displayed to the user if the script fails.

This can be used to customize what the user sees in the message box if the script exits with a non-zero exit code.

• Batch File

ECHO pyxll-set-error-message MESSAGE

• Powershell

Echo "pyxll-set-error-message MESSAGE"

3.2.9 Menu Ordering

Menu items added via the xl_menu decorator can specify what order they should appear in the menus. This can
be also be set, or overridden, in the config file.

To specify the order of sub-menus and items within the sub-menus use a “.” between the menu name, sub-menu
name and item name.

The example config below shows how to order menus with menu items and sub-menus.

[MENUS]
menu_1 = 1 # order of the top level menu menu_1
menu_1.menu_item_1 = 1 # order of the items within menu_1
menu_1.menu_item_2 = 2
menu_1.menu_item_3 = 3
menu_2 = 2 # order of the top level menu menu_2
menu_2.sub_menu_1 = 1 # order of the sub-menu sub_menu_1 within menu_2
menu_2.sub_menu_1.menu_item_1 = 1 # order of the items within sub_menu_1
menu_2.sub_menu_1.menu_item_2 = 2
menu_2.menu_item_1 = 2 # order of item within menu_2
menu_2.sub_menu_2 = 3

(continues on next page)

3.2. Configuring PyXLL 45

PyXLL User Guide, Release 5.8.0

(continued from previous page)

menu_2.sub_menu_2.menu_item_1 = 1
menu_2.sub_menu_2.menu_item_2 = 2

Here’s how the menus appear in Excel:

3.2.10 Shortcuts

Macros can have keyboard shortcuts assigned to them by using the shortcut keyword argument to xl_macro.
Alternatively, these keyboard shortcuts can be assigned, or overridden, in the config file.

Shortcuts should be one or more modifier key names (Ctrl, Shift or Alt) and a key, separated by the ‘+’ symbol. For
example, ‘Ctrl+Shift+R’. If the same key combination is already in use by Excel it may not be possible to assign a
macro to that combination.

The PyXLL developer macros (reload and rebind) can also have shortcuts assigned to them.

[SHORTCUTS]
pyxll.reload = Ctrl+Shift+R
module.macro_function = Alt+F3

See Keyboard Shortcuts for more details.

3.3 Worksheet Functions

3.3.1 Introduction

Writing an Excel Worksheet Function in Python

If you’ve not installed the PyXLL addin yet, see Installing PyXLL.

PyXLL user defined functions (UDFs) written in Python are exactly the same as any other Excel worksheet function.
They are called from formulas in an Excel worksheet in the same way, and appear in Excel’s function wizard just
like Excel’s native functions (see Function Documentation).

To tell the PyXLL add-in to expose a Python function so that we can call it from Excel, all that is needed is to add
the xl_func decorator to a Python function:

3.3. Worksheet Functions 46

PyXLL User Guide, Release 5.8.0

from pyxll import xl_func

@xl_func
def hello(name):

return "Hello, %s" % name

This funciton takes just a single argument, name, which can be passed in when we call the function from Excel.

PyXLL supports passing arguments and returning values of many different types, which is covered in detail in the
next section.

Configuring PyXLL with your Python Module

Once you have saved that code you need to ensure the interpreter can find it by modifying the following settings in
your pyxll.cfg config file:

• [PYXLL] / modules

The list of Python modules that PyXLL will import.

• [PYTHON] / pythonpath

The list of folders that Python will look for modules in.

If you saved the above code into a new file called my_module.py in a folder C:\Users\pyxll\modules you would add
the Python module my_module to the modules list, and C:\Users\pyxll\modules to the pythonpath.

Note that Python module file names end in .py, but the Python module names do not.

[PYXLL]
;
; Make sure that PyXLL imports the module when loaded.
;
; We use the module name here, not the file name,
; and so the ".py" file extension is omitted.
;
modules = my_module

[PYTHON]
;
; Ensure that PyXLL can find the module.
; Multiple modules can come from a single directory.
;
pythonpath = C:\Users\pyxll\modules

Calling your Python Function from Excel

Tip: No Need to Restart Excel!

Use the ‘Reload’ menu item under the PyXLL menu to reload your Python code without restarting Excel - this
causes all Python modules to be reloaded, making updated code available without thr need to restart Excel
itself.

After making these changes reload the PyXLL addin, or restart Excel. You can use the PyXLL function you have
just added in formulas in any Excel worksheet, because the function was decorated with xl_func.

=hello("me")

3.3. Worksheet Functions 47

PyXLL User Guide, Release 5.8.0

Tip: If your function does not appear in Excel or you get an error message, check the PyXLL log file. By default,
the log file will be in the logs folder next to the PyXLL add-in.

Different Argument and Return Types

Worksheet functions can take simple values, as in the example above, or more complex arguments including Pandas
DataFrames and Numpy arrays.

This is covered in detail in the next section.

3.3.2 Argument and Return Types

• Specifying the Argument and Return Types

– @xl_func Function Signature

– Python Type Hints

– @xl_arg and @xl_return Decorators

– Type Parameters

• Standard Types

– Array Types

– The ‘var’ Type

– Numpy Types

3.3. Worksheet Functions 48

PyXLL User Guide, Release 5.8.0

– Pandas Types

– Polars Types

– Dictionary Types

– Dataclass Types

– Union Types

– Optional Types

– Function Type

– Error Types

• Using Python Objects Directly

• Custom Types

• Manual Type Conversion

Specifying the Argument and Return Types

When you started using PyXLL you probably discovered how easy it is to register a Python function in Excel. To
improve efficiency and reduce the chance of errors, you can also specify what types the arguments to that function
are expected to be, and what the return type is. This information is commonly known as a function’s signature.
There are three common ways to add a signature to a function, described in the following sections.

@xl_func Function Signature

The most common way to provide the signature is to provide a function signature as the first argument to xl_func:

from pyxll import xl_func
from datetime import date, timedelta

@xl_func("date d, int i: date")
def add_days(d, i):

return d + timedelta(days=i)

When adding a function signature string it is written as a comma separated list of each argument type followed
by the argument name, ending with a colon followed by the return type. The signature above specifies that the
function takes two arguments called d, a date, and i, and integer, and returns a value of type date. You may omit
the return type; PyXLL automatically converts it into the most appropriate Excel type.

Adding type information is useful as it means that any necessary type conversion is done automatically, before your
function is called.

Python Type Hints

Type information can also be provided using type annotations, or hints, in Python 3.

This example shows how you pass dates to Python functions from Excel using type annotations:

from pyxll import xl_func
from datetime import date, timedelta

@xl_func
def add_days(d: date, i: int) -> date:

return d + timedelta(days=i)

3.3. Worksheet Functions 49

PyXLL User Guide, Release 5.8.0

Internally, an Excel date is just a floating-point a number. If you pass a date to a Python function with no type
information then that argument will just be a Python float when it is passed to your Python function. Adding a
signature removes the need to convert from a float to a date in every function that expects a date. The annotation
on your Python function (or the signature argument to xl_func) tells PyXLL and Excel what type you expect, and
the the conversion is done automatically.

@xl_arg and @xl_return Decorators

The final way type information can be added to a function is by using specific argument and return type decorators.
These are particularly useful for more complex types that require parameters, such as NumPy arrays and Pandas
types. Parameterized types can be specified as part of the function signature, or using xl_arg and xl_return.

For example, the following function takes two 1-dimensional NumPy arrays, using a function signature:

from pyxll import xl_func
import numpy as np

@xl_func("numpy_array<ndim=1> a, numpy_array<ndim=1> b: var")
def add_days(a, b):

return np.correlate(a, b)

But this could be re-written using xl_arg as follows:

from pyxll import xl_func, xl_arg
import numpy as np

@xl_func
@xl_arg("a", "numpy_array", ndim=1)
@xl_arg("b", "numpy_array", ndim=1)
def add_days(a, b):

return np.correlate(a, b)

Type Parameters

Many types can be parameterised to further control the type conversion between Excel and Python. An example
of this is in the section above where we see the numpy_array type accepts a type parameter ndim.

Type parameters can be specified when using a function signature, or when using the xl_arg and xl_return
decorators.

For details of the type parameters available see the specific documentation for the type you are interested in. Type
parameters can be different depending on whether it is the argument conversion or return conversion that is being
specified.

Standard Types

Several standard types may be used in the signature specified when exposing a Python worksheet function. These
types have a straightforward conversion between PyXLL’s Excel-oriented types and Python types. Arrays and more
complex objects are discussed later.

Below is a list of these basic types. Any of these can be specified as an argument type or return type in a function
signature. For some types, Python type hints or annotations can be used.

3.3. Worksheet Functions 50

PyXLL User Guide, Release 5.8.0

PyXLL Type Python Type Python Type Hint
float float float
int int int
str str str
unicode unicode4 N/A
bool bool bool
datetime datetime.datetime1 datetime.datetime
date datetime.date datetime.date
time datetime.time datetime.time
var object5 typing.Any
object object2 object
rtd RTD3 RTD
xl_cell XLCell6 XLCell
range Excel Range COM Wrapper7 N/A
function function8 typing.Callable

Array Types

See Array Functions for more details about array functions.

Ranges of cells can be passed from Excel to Python as a 1d or 2d array.

Any type can be used as an array type by appending [] for a 1d array or [][] for a 2d array:

from pyxll import xl_func

@xl_func("float[][] array: float")
def py_sum(array):

"""return the sum of a range of cells"""
total = 0.0

2d array is a list of lists of floats
for row in array:

for cell_value in row:
total += cell_value

(continues on next page)

4 Unicode was only introduced in Excel 2007 and is not available in earlier versions. Use xl_version to check what version of Excel is
being used if in doubt.

1 Excel represents dates and times as numbers. PyXLL will convert dates and times to and from Excel’s number representation, but in Excel
they will look like numbers unless formatted. When returning a date or time from a Python function you will need to change the Excel cell
formatting to a date or time format.

5 The var type can be used when the argument or return type isn’t fixed. Using the more a specific type has the advantage that arguments
passed from Excel will get coerced correctly. For example if your function takes an int you’ll always get an int and there’s no need to do type
checking in your function. If you use a var, you may get a float if a number is passed to your function, and if the user passes a non-numeric
value your function will still get called so you need to check the type and raise an exception yourself.

If no type information is provided for a function it will be assumed that all arguments and the return type are the var type. PyXLL will do
its best to perform the necessary conversions, but providing specific information about typing is the best way to ensure that type conversions
are correct.

2 The object type in PyXLL lets you pass Python objects between functions as object handles that reference the real objects in an internal
object cache. You can store object references in spreadsheet cells and use those cell references as function arguments.

For Python’s primitive types, use the var type instead.
3 rtd is for functions that return Real Time Data.
6 Specifying xl_cell as an argument type passes an XLCell instance to your function instead of the value of the cell. This is useful if you

need to know the location or some other data about the cell used as an argument as well as its value.
7 New in PyXLL 4.4

The range argument type is the same as xl_cell except that instead of passing an XLCell instance a Range COM object is used instead.
The default Python COM package used is win32com, but this can be changed via an argument to the range type. For example, to use xlwings

instead of win32com you would use range<xlwings>.
8 New in PyXLL 5.4

The function argument type can be used to pass other xl_func functions to Python functions in Excel. This can be useful for functions that
require a callback function and is cleaner than specifying the function name as a string and then having to look up the Python function.

3.3. Worksheet Functions 51

PyXLL User Guide, Release 5.8.0

(continued from previous page)

return total

A 1d array is represented in Python as a simple list, and when a simple list is returned to Excel it will be returned
as a column of data. A 2d array is a list of lists (list of rows) in Python. To return a single row of data, return it as
a 2d list of lists with only a single row.

When returning a 2d array remember that it* must* be a list of lists. This is why you woud return a single a row of
data as [[1, 2, 3, 4]], for example. To enter an array formula in Excel you select the cells, enter the formula
and then press Ctrl+Shift+Enter.

Any type can be used as an array type, but float[] and float[][] require the least marshalling between Excel
and python and are therefore the fastest of the array types.

If you a function argument has no type specified or is using the var type, if it is passed a range of data that will be
converted into a 2d list of lists of values and passed to the Python function.

See NumPy Array Types and Pandas Types for details of how to pass numpy and pandas types between Excel and
Python functions.

The ‘var’ Type

The var type can be used when your function accepts any type. It is also the default type used if no other type is
specified.

When an argument is passed from Excel to Python using the var type the most appropriate conversion is chosen
automatically from the primiative types natively supported by Excel.

The following examples all use the var type:

from pyxll import xl_func

@xl_func
def my_function(x):

As no type was specified, both 'x' and return type type will
default to 'var'
return str(type(x)) # return type is also 'var' as unspecified

from pyxll import xl_func

@xl_func("x var: str")
def my_function(x):

x can be of any type as 'var' was specified as the argument
type in the function signature above.
return str(type(x)) # return type is 'str' from the signature

from pyxll import xl_func
import typing

@xl_func
def my_function(x: typing.Any) -> str:

x will use the 'var' type because the 'Any' type hint was used
return str(type(x)) # return type is 'str' from the type hint

from pyxll import xl_func

@xl_func
(continues on next page)

3.3. Worksheet Functions 52

PyXLL User Guide, Release 5.8.0

(continued from previous page)

@xl_arg("x", "var")
def my_function(x):

x was specified to use the 'var' type using @xl_arg above
return str(type(x)) # return type is unspecified as so 'var' is assumed

When using see cached objects the var will, by default, look up the cached object from the object handle passed to
the function and pass the object to the function. This can be disabled using the no_object_lookup type parameter,
for example var<no_object_lookup=True>.

Note: The no_object_lookup type parameter is new in PyXLL 5.6.

Numpy Types

See NumPy Array Types for details about the supported Numpy types.

Pandas Types

See Pandas Types for details about the supported Pandas types.

Polars Types

See Polars DataFrames for details about the supported Polars types.

Dictionary Types

Python functions can be passed a dictionary, converted from an Excel range of values. Dicts in a spreadsheet are
represented as a 2xN range of keys and their associated values. The keys are in the columns unless the range’s
transpose argument (see below) is true.

The following is a simple function that accepts an dictionary of integers keyed by strings. Note that the key and
value types are optional and default to var if not specified.

from pyxll import xl_func

@xl_func("dict<str, int>: str") # Keys are strings, values are integers
def dict_test(x):

return str(x)

From PyXLL 5.8.0, if using Python 3.8 or higher, you can also use the standard TypedDict type annotation.

from typing import TypedDict
from pyxll import xl_func

class MyTypedDict(TypedDict):
a: int
b: int
c: int

@xl_func
def dict_test(x: MyTypedDict) -> str:

return str(x)

3.3. Worksheet Functions 53

PyXLL User Guide, Release 5.8.0

The dict type can be parameterized so that you can also specify the key and value types, and some other options.

• dict, when used as an argument type

dict<key=var, value=var, transpose=False, ignore_missing_keys=True,
ignore_missing_values=False>

– key Type used for the dictionary keys.

– value Type used for the dictionary values.

– transpose - False (the default): Expect the dictionary with the keys on the first column of data
and the values on the second. - True: Expect the dictionary with the keys on the first row of data
and the values on the second. - None: Try to infer the orientation from the data passed to the
function.

– ignore_missing_keys If True, ignore any items where the key is missing.

– ignore_missing_values If True, ignore any items where the value is missing (new in PyXLL
5.7).

• dict, when used as an return type

dict<key=var, value=var, transpose=False, order_keys=True>

– key Type used for the dictionary keys.

– value Type used for the dictionary values.

– transpose - False (the default): Return the dictionary as a 2xN range with the keys on the first
column of data and the values on the second. - True: Return the dictionary as an Nx2 range with
the keys on the first row of data and the values on the second.

– order_keys Sort the dictionary by its keys before returning it to Excel.

Dataclass Types

Python dataclasses are a convenient way of creating Python classes encapsulating a collection of typed data fields.

They can also be used to make passing structured data objects between Python and Excel simpler.

Working with dataclasses in Excel is similar to using dictionaries. From Excel, a 2d array of key, value pairs can
be passed to a function expecting a dataclass and the correct dataclass will be constructed automatically.

For example, the following code defines a dataclass:

from dataclasses import dataclass

@dataclass
class InventoryItem:

"""Class for keeping track of an item in inventory."""
name: str
unit_price: float
quantity_on_hand: int = 0

3.3. Worksheet Functions 54

PyXLL User Guide, Release 5.8.0

To write an Excel function that accepts a dataclass of this type you simply need to add a type hint to the function
argument:

from pyxll import xl_func

@xl_func
def cost_of_stock(item: InventoryItem) -> float:

"""Returns the total cost of inventory items on hand."""
return item.unit_price * item.quantity_on_hand

Or, if passing a signature string to xl_func instead of using type hints:

from pyxll import xl_func

@xl_func("InventoryItem item: float")
def cost_of_stock(item):

"""Returns the total cost of inventory items on hand."""
return item.unit_price * item.quantity_on_hand

Lists of dataclasses can also be used. The first column of data is the field names, and subsequent columns are field
values for each dataclass instance.

from pyxll import xl_func
from typing import List

@xl_func
def total_cost_of_stock(items: List[InventoryItem]) -> float:

"""Returns the total cost of inventory items on hand."""
total = 0.0
for item in items:

total += item.unit_price * item.quantity_on_hand
return total

If you data is laid out with the field names as column headers, use the transpose type parameter on the dataclass
arguement, for example, using xl_arg:

from pyxll import xl_func, xl_arg

@xl_func
@xl_arg("items", transpose=True)
def total_cost_of_stock(items: List[InventoryItem]) -> float:

...

Or using a signature string to xl_func:

from pyxll import xl_func

@xl_func("InvetoryItem<transpose=True>[]: float")
def total_cost_of_stock(items: List[InventoryItem]) -> float:

...

Dataclasses can also be used as a return type.

Note: Using dataclasses requires PyXLL 5.8.0 and Python 3.7 or later.

3.3. Worksheet Functions 55

PyXLL User Guide, Release 5.8.0

Union Types

Union types can be used for functions that accept arguments or return objects of more than one types. In such
examples, the var type can be used, but then the value may need to be converted in the function when it’s more
convenient to let PyXLL do the conversion.

Note: Union types are new in PyXLL 5.1

For example, support you have a function that can take either a date or a string. This is a common situation
for functions that can either take an absolute date or a time period. Using the var type, Excel dates are passed
as numbers since that is how Excel represents dates, and so the conversion from a number to a date must be done
using get_type_converter (see Manual Type Conversion). Using a union type removes the need for thisextra
conversion step.

Union types may be specified in the xl_func function signature using the union<...> type, with the possible
types passed as parameters. They can also be specified using Python type annotations using the typing.Union
type annotation.

The following is a function that will accept either a date or a str. The conversion from an Excel date to a Python
date is performed automatically if a date is passed, and the function can also accept a string argument from Excel.

from pyxll import xl_func
import datetime as dt

@xl_func("union<date, str> value: str")
def date_or_string(value):

if isinstance(value, dt.date):
return "Value is a date: %s" % value

return "Value is a string: %s" % value

The same can be written using Python type annotations as follows

from pyxll import xl_func
import datetime as dt
import typing

@xl_func
def date_or_string(value: typing.Union[dt.date, str]) -> str:

if isinstance(value, dt.date):
return "Value is a date: %s" % value

return "Value is a string: %s" % value

The order the union type arguments are specified in matters.

In the above example, if str was placed before date then it would not work as intended since the conversion to
str would take precedence over the conversion to date.

PyXLL will attempt to convert the Excel value to a Python value as follows:

1. If the Excel value is a cached object and one or more of the types are object or a type based on object,
each object-like type conversion will be attempted in order from left to right.

2. If the Excel value exactly matches one of the types then the value will not be converted. This check is only
possible for primitive types.

3. An attempt will be made to convert the value to each of the listed types in order, from left to right. The result
from the first attempted conversion that succeeds will be used.

Note: The logic around converting cached objects was refined in PyXLL 5.6.

3.3. Worksheet Functions 56

PyXLL User Guide, Release 5.8.0

Optional Types

Optional types are used for arguments that can be omitted by the user calling the function. If the argument is
omitted then None will be passed to Python.

Note: Optional types are new in PyXLL 5.6

Optional types may be specified in the xl_func function signature using the optional<type> type, with the
actual type passed as the type parameter. They can also be specified using Python type annotations using the
typing.Optional type annotation.

The following is a function that will accept an optional date argument. If no argument is provided then the function
will be called with None.

from pyxll import xl_func
import datetime as dt

@xl_func("optional<date> value: str")
def optional_date(value):

if value is None:
return "No date"

return value.strftime("%Y-%m-%d")

The same can be written using Python type annotations as follows

from pyxll import xl_func
import datetime as dt
import typing

@xl_func
def optional_date(value: typing.Optional[dt.date]) -> str:

if value is None:
return "No date"

return value.strftime("%Y-%m-%d")

Function Type

Python functions exposed to Excel using xl_func can be passed in to other Python functions from Excel using
the function type. This is useful when you have one function that takes another callback function that the user
can select.

Note: The function type is new in PyXLL 5.4.

For example, the following function takes a list of values and a function and calls that function on each value and
returns the result:

from pyxll import xl_func

@xl_func("float[] values, function fn: float[]")
def apply_function(values, fn):

return [fn(value) for value in values]

This function can be called from Excel passing in another xl_func function.

3.3. Worksheet Functions 57

PyXLL User Guide, Release 5.8.0

from pyxll import xl_func
import math

@xl_func("float x: float")
def sigmoid(x):

return 1 / (1 + math.exp(x))

We can call our sigmoid function on a single value in Excel, or using the apply_function function above we
can pass in the sigmoid function and call it for list of values.

=apply_function(A1:A20, sigmoid)

If you are using Python type annotations instead of passing a signature string the types typing.Callable or
collections.abc.Callable may be used to specify the argument is a function.

Warning: Only PyXLL functions can be passed as function arguments. You cannot pass standard Excel
functions, VBA functions or functions from other add-ins to Python functions using the function type.

Error Types

Excel errors can be passed to Python functions that use the var argument type. Similarly, Python functions can
return specific errors to Excel by returning Python Exception objects.

PyXLL maps Excel errors to Python Exception types as specified in the following table:

Excel error Python exception type
#NULL! LookupError
#DIV/0! ZeroDivisionError
#VALUE! ValueError
#REF! ReferenceError
#NAME! NameError
#NUM! ArithmeticError
#NA! RuntimeError

See Handling Errors for more information about handling errors from worksheet functions.

3.3. Worksheet Functions 58

PyXLL User Guide, Release 5.8.0

Using Python Objects Directly

Not all Python types can be conveniently converted to a type that can be represented in Excel.

Even for types that can be represented in Excel it is not always desirable to do so (for example, and Pandas
DataFrame with millions of rows could be returned to Excel as a range of data, but it would not be very useful
and would make Excel very slow).

For cases like these, PyXLL can return a handle to the Python object to Excel instead of trying to convert the object
to an Excel friendly representation. The actual object is held in PyXLL’s object cache until it is no longer needed.
This allows for Python objects to be passed between Excel functions easily, without the complexity or possible
performance problems of converting them between the Python and Excel representations.

For more information about how PyXLL can automatically cache objects to be passed between Excel functions as
object handles, see Cached Objects.

Custom Types

As well as the standard types listed above you can also define your own argument and return types, which can then
be used in your function signatures.

Custom argument types need a function that will convert a standard Python type to the custom type, which will then
be passed to your function. For example, if you have a function that takes an instance of type X, you can declare
a function to convert from a standard type to X and then use X as a type in your function signature. When called
from Excel, your conversion function will be called with an instance of the base type, and then your exposed UDF
will be called with the result of that conversion.

To declare a custom type, you use the xl_arg_type decorator on your conversion function. The xl_arg_type
decorator takes at least two arguments, the name of your custom type and the base type.

Here’s an example of a simple custom type:

from pyxll import xl_arg_type, xl_func

class CustomType:
def __init__(self, x):

self.x = x

@xl_arg_type("CustomType", "string")
def string_to_customtype(x):

return CustomType(x)

@xl_func("CustomType x: bool")
def test_custom_type_arg(x):

this function is called from Excel with a string, and then
string_to_customtype is called to convert that to a CustomType
and then this function is called with that instance
return isinstance(x, CustomType)

You can now use CustomType as an argument type in a function signature. The Excel UDF will take a string, but
when your Python function is called the conversion function will have been used invisibly to automatically convert
that string to a CustomType instance.

To use a custom type as a return type you also have to specify the conversion function from your custom type to a
base type. This is exactly the reverse of the custom argument type conversion described previously.

The custom return type conversion function must be decorated with the xl_return_type decorator.

For the previous example the return type conversion function could look like:

3.3. Worksheet Functions 59

PyXLL User Guide, Release 5.8.0

from pyxll import xl_return_type, xl_func

@xl_return_type("CustomType", "string")
def customtype_to_string(x):

x is an instance of CustomType
return x.x

@xl_func("string x: CustomType")
def test_returning_custom_type(x):

the returned object will get converted to a string
using customtype_to_string before being returned to Excel
return CustomType(x)

Any recognized type can be used as a base type. That can be a standard Python type, an array type or another
custom type (or even an array of a custom type!). The only restriction is that it must resolve to a standard type
eventually.

Custom types can be parameterized by adding additional keyword arguments to the conversion functions. Val-
ues for these arguments are passed in from the type specification in the function signature, or using xl_arg and
xl_return:

from pyxll import xl_arg_type, xl_func

class CustomType2:
def __init__(self, x, y):

self.x = x
self.y = y

@xl_arg_type("CustomType2", "string", y=None)
def string_to_customtype2(x):

return CustomType(x, y)

@xl_func("CustomType2<y=1> x: bool")
def test_custom_type_arg2(x):

assert x.y == 1
return isinstance(x, CustomType)

Manual Type Conversion

Sometimes it’s useful to be able to convert from one type to another, but it’s not always convenient to have to
determine the chain of functions to call to convert from one type to another.

For example, you might have a function that takes an array of var types, but some of those may actually be datetimes,
or one of your own custom types.

To convert them to those types you would have to check what type has actually been passed to your function and
then decide what to call to get it into exactly the type you want.

PyXLL includes the function get_type_converter to do this for you. It takes the names of the source and target
types and returns a function that will perform the conversion, if possible.

Here’s an example that shows how to get a datetime from a var parameter:

from pyxll import xl_func, get_type_converter
from datetime import datetime

@xl_func("var x: string")
def var_datetime_func(x):

(continues on next page)

3.3. Worksheet Functions 60

PyXLL User Guide, Release 5.8.0

(continued from previous page)

var_to_datetime = get_type_converter("var", "datetime")
dt = var_to_datetime(x)
dt is now of type 'datetime'
return "%s : %s" % (dt, type(dt))

3.3.3 Cached Objects

PyXLL can pass Python objects between Excel functions even if the Python object can’t be converted to a type that
can be represented in Excel. It does this by maintaining an object cache and returning handles to objects in the
cache. The cached object is automatically retrieved when an object handle is passed to another PyXLL function.

Even for types that can be represented in Excel it is not always desirable to do so (for example, and Pandas
DataFrame with millions of rows could be returned to Excel as a range of data but it would not be very useful
and would make Excel slow).

Instead of trying to convert the object to an Excel friendly representation, PyXLL can cache the Python object and
return a handle to that cached object to Excel. The actual object is held in PyXLL’s object cache until it is no longer
needed. This allows for Python objects to be passed between Excel functions easily, and without the complexity or
possible performance problems of converting them between the Python and Excel representations.

• Example

• Accessing Cached Objects in Macros

• Populating the Cache On Loading

• Saving Objects in the Workbook

• Custom Object Handles

• Mixing Primitive Values and Objects

• Clearing the Cache on Reloading

Example

The following example shows one function that returns a Python object, and another that takes that Python object
as an argument:

from pyxll import xl_func

class CustomObject:
def __init__(self, name):

self.name = name

@xl_func("string name: object")
def create_object(x):

return CustomObject(x)

@xl_func("object x: string")
def get_object_name(x):

assert isinstance(x, CustomObject)
return x.name

3.3. Worksheet Functions 61

PyXLL User Guide, Release 5.8.0

Note that the object is not copied. This means if you modify the object passed to your function then you will be
modifying the object in the cache.

When an object is returned in this way it is added to an internal object cache. This cache is managed by PyXLL so
that objects are evicted from the cache when they are no longer needed.

When using the var type, if an object of a type that has no converter is returned then the object type is used.
When passing an object handle to a function where the argument type is the var type (or unspecified) then the
object will be retrieved from the cache and passed to the function automatically.

Accessing Cached Objects in Macros

When writing an Excel macro, if you need to access a cached object from a cell or set a cell value and cache an
object you can use the XLCell class. Using the XLCell.options method you can set the type to object before
getting or setting the cell value. For example:

from pyxll import xl_macro, xl_app, XLCell

@xl_macro
def get_cached_object():

"""Get an object from the cache and print it to the log"""
Get the Excel.Application object
xl = xl_app()

Get the current selection Range object
selection = xl.Selection

Get the cached object stored at the selection
cell = XLCell.from_range(selection)
obj = cell.options(type="object").value

'value' is the actual Python object, not the handle
print(obj)

(continues on next page)

3.3. Worksheet Functions 62

PyXLL User Guide, Release 5.8.0

(continued from previous page)

@xl_macro
def set_cached_object():

"""Cache a Python object by setting it on a cell"""
Get the Excel.Application object
xl = xl_app()

Get the current selection Range object
selection = xl.Selection

Create our Python object
obj = object()

Cache the object in the selected cell
cell = XLCell.from_range(selection)
cell.options(type="object").value = obj

Instead of using a cell reference it is also possible to fetch an object from the cache by its handle. To do this use
get_type_converter to convert the str handle to an object, e.g.:

from pyxll import xl_func, get_type_converter

@xl_macro("str handle: bool")
def check_object_handle(handle):

Get the function to lookup and object from its handle
get_cached_object = get_type_converter("str", "object")

Get the cached object from the handle
obj = get_cached_object(handle)

Check the returned object is of the expected type
return isinstance(obj, MyClass)

Populating the Cache On Loading

When Excel first starts the cache is empty and so functions returning objects must be run to populate the cache.

PyXLL has a feature that enables functions to be called automatically when loading a workbook (Recalculating
On Open). When a workbook is opened any cell containing a function that has been set to recalculate on open will
be recalculated when that workbook is opened and calculated.

By default, all functions that return the type object are marked as needing to be recalculated when a saved work-
book is opened. This ensures that the cache is populated at the time the workbook opens and is first calculated and
avoids the need to fully recalculate the entire workbook.

For functions that take some time to run, or any other functions that should not be recalculated as soon as the
workbook opens, use recalc_on_open=False in the xl_func decorator, eg:

from pyxll import xl_func

@xl_func(": object", recalc_on_open=False)
def dont_calc_on_open():

long running task
return obj

You can change the default behaviour so that recalc_on_open is False for object functions unless explicitly
marked otherwise by setting recalc_cached_objects_on_open = 0, e.g.

3.3. Worksheet Functions 63

PyXLL User Guide, Release 5.8.0

[PYXLL]
recalc_cached_objects_on_open = 0

Note: This feature is new in PyXLL 4.5. For prior versions, or for workbooks saved using prior versions, the
workbook will need to be recalculated by pressing Ctrl+Alt+F9 to populate the cache.

Saving Objects in the Workbook

Rather than having to recalculate functions to recreate the cached objects PyXLL can serialize and save cached
objects as part of the Excel Workbook Metadata.

This is useful if you have objects that take a long time to calculate and they don’t need to be recreated each time
the workbook is open.

Caution should be used when deciding whether or not to use this function. It is usually better to source data from
an external data source and load it in each time. Referencing an external data source ensures that you always see a
consistent, up to date view of the data. There are times when saving objects in the Workbook is more convenient
and we only advise that you consider which option is right for your use-case.

Saving objects as part of the workbook will inevitably increase the size of the workbook file, and so you should
also consider how large the objects to be saved are. Excel should never be used as a replacement for a database!

To have PyXLL save the result of a function use the save parameter to the object return type:

from pyxll import xl_func

@xl_func(": object<save=True>")
def function_with_saved_result():

Construct an object and return it
return obj

When calling a function like the one above the object handle will be slightly different to a normal object handle.
For objects that are saved the object handle needs to be globally unique and not just unique in the current Excel
session. This is because when the object is loaded it will keep the same id and that must not conflict with any other
objects that may already exist in the Excel session. If you are using your own custom object handle you must take
this into consideration.

Objects that are to be saved must be pickle-able. This means that they must be able to be serialized and deserialized
using Python’s pickle module. They are serialized and added to the workbook metadata when the workbook is
saved.

See https://docs.python.org/3/library/pickle.html for details about Python’s pickle module.

Note that the Python code required to reconstruct the pickled objects must be available when opening a workbook
containing saved objects in order for those objects to be deserialized and entered into the object cache.

Loading saved objects can be disabled by setting disable_loading_objects = 1 in the PYXLL section of the
pyxll.cfg config file.

[PYXLL]
disable_loading_objects = 1

Note: This feature is new in PyXLL 5.0.

3.3. Worksheet Functions 64

https://docs.python.org/3/library/pickle.html

PyXLL User Guide, Release 5.8.0

Custom Object Handles

The method of generating object handles can be customized by setting get_cached_object_id in the PYXLL
section of the config file.

The generated object handles must be unique as each object is stored in the cache keyed by its object handle. For
objects that will be saved as part of the workbook it’s important to use a globally unique identifier as those objects
will be loaded with the same id later and must not conflict with other objects that may have already been loaded
into the object cache.

Only one function can be registered for generating object handles for all cached objects. Different formats of object
handles for different object types can be generated by inspecting the type of the object being cached.

The following example shows a simple function that returns an object handle from an object. Note that it uses the
‘id’ function to ensure that no two objects can have the same handle. When the kwarg save is set to True that
indicates that the object may be serialized and saved as part of the workbook and so a globally unique identifier is
used in that case.

def get_custom_object_id(obj, save=False):
if save:

return str(uuid.uuid4())
return "[Cached %s <0x%x>]" % (type(obj), id(obj))

To use the above function to generate the object handles for PyXLL’s object cache it needs to be configured in the
pyxll.cfg config file. This is done using the fully qualified function name, including the module the function is
declared in.

Listing 1: module_name.py

[PYXLL]
get_cached_object_id = module_name.get_custom_object_id

The save kwarg in the custom object id function indicates whether or not the object may be saved in the workbook.
When objects are saved the same id is reused when loading the workbook later, and so these ids should be globally
unique to avoid conflicts with other existing objects. See Saving Objects in the Workbook.

Note: Prior to PyXLL 5.0 the custom object handle function did not take the save kwarg.

Mixing Primitive Values and Objects

If you have a function that you want to return an object in some cases and a primitive value, like a number or string,
in other cases then you can use the skip_primitives parameter to the object return type.

Listing 2: pyxll.cfg

from pyxll import xl_func
from random import random

@xl_func("int x: object<skip_primitives=True>")
def func(x):

if x == 0:
returned as a number to Excel
return 0

return a list of values as an 'object'
array = [random() for i in range(x)]
return array

3.3. Worksheet Functions 65

PyXLL User Guide, Release 5.8.0

When skip_parameters is set to True then the following types will not be returned as object handles:

• int

• float

• str

• bool

• Exception

• datetime.date

• datetime.datetime

• datetime.time

If you need more control over what types are considered primitive you can pass a tuple of types as the
skip_primitives parameter.

Clearing the Cache on Reloading

Whenever PyXLL is reloaded the object cache is cleared. This is because the cached objects may be instances of
old class definitions that have since been reloaded. Using instances of old class definitions may lead to unexpected
behaviour.

If you know that you are not reloading any classes used by cached objects, or if you are comfortable knowing that
the cached objects may be instances of old classes, then you can disable PyXLL from clearing the cache when
reloading. To do this, set clear_object_cache_on_reload = 0 in your pyxll.cfg file.

This is only recommended if you completely understand the above and are aware of the implications of potentially
using instances of old classes that have since been reloaded. One common problem is that methods that have been
changed are not updated for these instances, and isinstance will fail if checked using the new reloaded class.

[PYXLL]
clear_object_cache_on_reload = 0

3.3.4 Array Functions

• Array Functions in Python

• Array Types

• Ctrl+Shift+Enter (CSE) Array Functions

• Auto Resizing Array Functions

• Dynamic Array Functions

Any function that returns an array (or range) of data in Excel is called an array function.

Depending on what version of Excel you are using, array functions are either entered as a Ctrl+Shift+Enter (CSE)
formula, or as a dynamic array formula. Dynamic array formulas have the advantage over CSE formulas that they
automatically resize according to the size of the result.

To help users of older Excel versions, PyXLL array function results can be automatically re-sized .

The #SPILL! error indicates that the array would overwrite other data.

3.3. Worksheet Functions 66

PyXLL User Guide, Release 5.8.0

Array Functions in Python

Any function exposed to Excel using the xl_func decorator that returns a list of values is an array function.

If a function returns a list of simple values (not lists) then it will be returned to Excel as a column of data. Rectan-
guler ranges of data can be returned by returning a list of lists, eg:

from pyxll import xl_func

@xl_func
def array_function():

return [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]

]

An optional function signature passed to xl_func can be used to specify the return type. The suffix [] is used for
a 1d array (column), e.g. float[], and [][] is used for a 2d array, e.g. float[][].

For example, the following function takes 1d array (list of values) and returns a 2d array of values (list of lists):

from pyxll import xl_func

@xl_func("float[]: float[][]")
def diagonal(v):

d = []
for i, x in enumerate(v):

d.append([x if j == i else 0.0 for j in range(len(v))])
return d

NumPy arrays and Pandas types (DataFrames, Series etc) can also be returned as arrays to Excel by specifying the
relevant type in the function signature. See NumPy Array Types and Pandas Types for more details.

When entering an array formula in Excel it should be entered as a Ctrl+Shift+Enter (CSE) formula, or if using
Dynamic Arrays or PyXLL’s array auto-sizing feature then they can be entered in the same way as any other
formula.

Array Types

New in PyXLL 5.7

As well as specifying the argument or return type as an array using the type[] syntax in the xl_func signature or
to xl_arg or xl_return decorators, you can specify if you want the Python type to be a list (same as type[]),
tuple or set.

Python type hints can also be used.

PyXLL Type Python Type Python Type Hint
list list list or typing.List
tuple tuple list or typing.Tuple
set set set or typing.Set

These array types have the following type parameters:

• list and tuple
– T Type used for the item type.

– ndim 1 or 2, for 1d or 2d collections.

• set

3.3. Worksheet Functions 67

PyXLL User Guide, Release 5.8.0

– T Type used for the item type.

For example, the following function accepts a tuple of floats:

from pyxll import xl_func

@xl_func("tuple<float> x: str")
def tuple_func(x):

x is a tuple of strings
return str(x)

This could also be specified using a Python type hint as follows:

from pyxll import xl_func

@xl_func
def tuple_func(x: tuple[float]):

x is a tuple of floats
return str(x)

Two dimensional lists and tuples can also be used, for example:

from pyxll import xl_func

Note: This is equivalent to 'int[][]'
@xl_func("list<int, ndim=2> x: str")
def tuple_func(x):

x is a list of lists of strings
return str(x)

This could also be specified using a Python type hint as follows:

from pyxll import xl_func

@xl_func
def tuple_func(x: list[list[[int]]):

x is a list of lists of strings
return str(x)

Ctrl+Shift+Enter (CSE) Array Functions

Ctrl+Shift+Enter or CSE formulas are what Excel used for static array formulas in versions of Excel before Dy-
namic Arrays were added. PyXLL has an array auto-sizing feature that can emulate dynamic arrays in earlier
versions of Excel that do not implement them.

To enter an array formula in Excel you should do the following:

• Select the range you want the array formula to occupy.

• Enter the formula as normal, but don’t press enter.

• Press Ctrl+Shift+Enter to enter the formula.

Note that unless you are using Dynamic Arrays or PyXLL’s array auto-sizing feature then if the result is larger than
the range you choose then you will only see part of the result. Similarly, if the result is smaller than the selected
range you will see errors for the cells with no value.

To make changes to an array formula, change the formula as normal but use Ctrl+Shift+Enter to enter the new
formula.

3.3. Worksheet Functions 68

PyXLL User Guide, Release 5.8.0

Auto Resizing Array Functions

Often selecting a range the exact size of the result of an array formula is not practical. You might not know the size
before calling the function, or it may even change when the inputs change.

PyXLL can automatically resize array functions to match the result. To enable this feature you just add
‘auto_resize=True’ to the options passed to xl_func. For example:

from pyxll import xl_func

@xl_func("float[]: float[][]", auto_resize=True)
def diagonal(v):

d = []
for i, x in enumerate(v):

d.append([x if j == i else 0.0 for j in range(len(v))])
return d

You can apply this to all array functions by setting the following option in your pyxll.cfg config file

[PYXLL]
;
; Have all array functions resize automatically
;
auto_resize_arrays = 1

If you are using a version of Excel that has Dynamic Arrays then the auto_resize option will have no effect by
default. The native dynamic arrays are superior in most cases, but not yet widely available.

Warning: Auto-resizing is not available for RTD functions. If you are returning an array from an RTD
function and need it to resize you can use ref:Dynamic Arrays <dynamic> in Excel from Excel 2016 onwards.

If you are not able to update to a newer version of Excel, another solution is to return the array from your RTD
function as an object, and then have a second non-RTD function to expand that returned object to an array using
PyXLL’s auto-resize feature.

Dynamic Array Functions

Dynamic arrays were announced as a new feature of Excel towards the end of 2018. This feature will be rolled
out to Office 365 from early 2019. If you are not using Office 365, dynamic arrays are expected to be available in
Excel 2022.

If you are not using a version of Excel with the dynamic arrays feature, you can still have array functions that re-size
automatically using PyXLL. See Auto Resizing Array Functions.

Excel functions written using PyXLL work with the dynamic arrays feature of Excel. If you return an array from
a function, it will automatically re-size without you having to do anything extra.

If you are using PyXLL’s own auto resize feature, PyXLL will detect whether Excel’s dynamic arrays are available
and if they are it will use those in preference to its own re-sizing. This means that you can write code to work in
older versions of Excel that are future-proof and will ‘just work’ when you upgrade to a newer version of Office.

If you want to keep using PyXLL’s auto resize feature even when dynamic arrays are available, you can do so by
specifying the following in your pyxll.cfg config file

[PYXLL]
;
; Use resizing in preference to dynamic arrays
;
allow_auto_resizing_with_dynamic_arrays = 1

3.3. Worksheet Functions 69

PyXLL User Guide, Release 5.8.0

Dynamic arrays are a great new feature in Excel and offer some advantages over CSE functions and PyXLL’s
auto-resize feature:

Character-
istic

Advantage

Native to Ex-
cel

Dynamic arrays are deeply integrated into Excel and so the array resizing works with all array
functions, not just ones written with PyXLL.

Spilling If the results of an array formula would cause data to be over-written you will get a new #SPILL
error to tell you there was not enough room. When you select the #SPILL error Excelwill
highlight the spill region in blue so you can see what space it needs.

Referencing
the spill
range in A1#
notation

Dynamic arrays may seamlessly resize as your data changes. When referencing a resizing dy-
namic arrays you can reference the whole array in a dependable, resilient way by following the
cell reference with the # symbol. For example, the reference A1# references the entire spilled
range for a dynamic array in A1.

3.3.5 NumPy Array Types

To be able to use numpy arrays you must first have installed the numpy package..

You can use numpy 1d and 2d arrays as argument types to pass ranges of data into your function, and as return
types for returing for array functions. A maximum of two dimensions are supported, as higher dimension arrays
don’t fit well with how data is arranged in a spreadsheet. You can, however, work with higher-dimensional arrays
as Python objects.

To specify that a function should accept a numpy array as an argument or as its return type, use the numpy_array,
numpy_row or numpy_column types in the xl_func function signature.

These types can be parameterized, meaning you can set some additional options when specifying the type in the
function signature.

numpy_array<dtype=float, ndim=2, casting='unsafe'>

• dtype Data type of the items in the array (e.g. float, int, bool etc.).

• ndim Array dimensions, must be 1 or 2.

• casting Controls what kind of data casting may occur. Default is ‘unsafe’.

– 'unsafe' Always convert to chosen dtype. Will fail if any input can’t be converted.

– 'nan' If an input can’t be converted, replace it with NaN.

– 'no' Don’t do any type conversion.

numpy_row<dtype=float, casting='unsafe'>

• dtype Data type of the items in the array (e.g. float, int, bool etc.).

• casting Controls what kind of data casting may occur. Default is ‘unsafe’.

– 'unsafe' Always convert to chosen dtype. Will fail if any input can’t be converted.

– 'nan' If an input can’t be converted, replace it with NaN.

– 'no' Don’t do any type conversion.

numpy_column<dtype=float, casting='unsafe'>

• dtype Data type of the items in the array (e.g. float, int, bool etc.).

• casting Controls what kind of data casting may occur. Default is ‘unsafe’.

– 'unsafe' Always convert to chosen dtype. Will fail if any input can’t be converted.

– 'nan' If an input can’t be converted, replace it with NaN.

– 'no' Don’t do any type conversion.

3.3. Worksheet Functions 70

PyXLL User Guide, Release 5.8.0

For example, a function accepting two 1d numpy arrays of floats and returning a 2d array would look like:

from pyxll import xl_func
import numpy

@xl_func("numpy_array<float, ndim=1> a, numpy_array<float, ndim=1> b: numpy_array
→˓<float>")
def numpy_outer(a, b):

return numpy.outer(a, b)

The ‘float’ dtype isn’t strictly necessary as it’s the default. If you don’t want to set the type parameters in the
signature, use the xl_arg and xl_return decorators instead.

PyXLL will automatically resize the range of the array formula to match the returned data if you specify
auto_resize=True in your py:func:xl_func call.

Floating point numpy arrays are the fastest way to get data out of Excel into Python. If you are working on per-
formance sensitive code using a lot of data, try to make use of numpy_array<float> or numpy_array<float,
casting='nan'> for the best performance.

See Array Functions for more details about array functions.

3.3.6 Pandas Types

Pandas DataFrames and Series can be used as function arguments and return types for Excel worksheet functions.

For polars DataFrames, see Polars DataFrames.

When used as an argument, the range specified in Excel will be converted into a Pandas DataFrame or Series as
specified by the function signature.

When returning a DataFrame or Series, a range of data will be returned to Excel. PyXLL will automatically resize
the range of the array formula to match the returned data if auto_resize=True is set in xl_func.

The following shows returning a random dataframe, including the index:

from pyxll import xl_func
import pandas as pd
import numpy as np

@xl_func("int rows, int columns: dataframe<index=True>", auto_resize=True)
def random_dataframe(rows, columns):

data = np.random.rand(rows, columns)
column_names = [chr(ord('A') + x) for x in range(columns)]
return pd.DataFrame(data, columns=column_names)

Type Annotations

Python type annoations can be used instead of the type signature shown above.

Where type parameters are required you can use xl_arg and xl_return in conjunction with type annotations to
specify the type parameters.

The above functions can be written using type annoations as follows:

from pyxll import xl_func, xl_return
import pandas as pd
import numpy as np

@xl_func(auto_resize=True)
(continues on next page)

3.3. Worksheet Functions 71

PyXLL User Guide, Release 5.8.0

(continued from previous page)

@xl_return(index=True) # pass index=True to the DataFrame return type
def random_dataframe(rows: int, columns: int) -> pd.DataFrame:

data = np.random.rand(rows, columns)
column_names = [chr(ord('A') + x) for x in range(columns)]
return pd.DataFrame(data, columns=column_names)

Type Parameters

The following type parameters are available for the dataframe and series argument and return types:

• dataframe, when used as an argument type

dataframe<kind=None, index=0, columns=1, dtype=None, dtypes=None,
index_dtype=None>

kind
Set to pandas to specify that a pandas DataFrame is required. If not set the default DataFrame type
will be used.

The default DataFrame type can be set by the default_dataframe_kind option in the [PYXLL]
section of the pyxll.cfg file.

Defaults to pandas if not set otherwise.

index
Number of columns to use as the DataFrame’s index. Specifying more than one will result in a
DataFrame where the index is a MultiIndex.

columns
Number of rows to use as the DataFrame’s columns. Specifying more than one will result in a
DataFrame where the columns is a MultiIndex. If used in conjunction with index then any column
headers on the index columns will be used to name the index.

dtype
Datatype for the values in the dataframe. May not be set with dtypes.

dtypes
Dictionary of column name -> datatype for the values in the dataframe. May not be set with dtype.

The dictionary can be specified using standard Python dictionary syntax as part of a function signature
string. However, often it is more convenient to use the xl_arg or xl_return decorators. These allow
you to set type multiple complex parameters more easily, for example:

@xl_func
@xl_arg("df", dtypes={"A": "date"})
def your_function(df: pd.DataFrame):

....

Not all column dtypes need to be specified. Any that are not specified will default to var.

index_dtype
Datatype for the values in the dataframe’s index.

multi_sparsePage 72, 1

Return sparse results for MultiIndexes. Can be set to True or False, or 'index' or 'columns' if it
should only apply to one or the other.

• dataframe, when used as a return type

dataframe<kind=None, index=None, columns=True>

1 The multi_sparse parameter is new in PyXLL 5.3.0.

3.3. Worksheet Functions 72

PyXLL User Guide, Release 5.8.0

kind
Set to pandas force the kind of DataFrame expected to be a pandas DataFrame.

If not set, any supported kind of DataFrame can be used.

index
If True include the index when returning to Excel, if False don’t. If None, only include if the index is
named.

columns
If True include the column headers, if False don’t.

• series, when used as an argument type

series<index=1, transpose=None, dtype=None, index_dtype=None>

index
Number of columns (or rows, depending on the orientation of the Series) to use as the Series index.

transpose
Set to True if the Series is arranged horizontally or False if vertically. By default the orientation will
be guessed from the structure of the data.

dtype
Datatype for the values in the Series.

index_dtype
Datatype for the values in the Series’ index.

multi_sparse1

Return sparse results for MultiIndexes.

• series, when used as a return type

series<index=True, transpose=False>

index
If True include the index when returning to Excel, if False don’t.

transpose
Set to True if the Series should be arranged horizontally, or False if vertically.

Tip: For specifying multiple or complex type parameters it can be easier to use the xl_arg and xl_return
decorators.

See @xl_arg and @xl_return Decorators for more details about how to use xl_arg and xl_return to specify
type parameters.

When passing large DataFrames between Python functions, it is not always necessary to return the full DataFrame
to Excel and it can be expensive reconstructing the DataFrame from the Excel range each time. In those cases
you can use the object return type to return a handle to the Python object. Functions taking the dataframe and
series types can accept object handles.

See Using Pandas in Excel for more information.

3.3. Worksheet Functions 73

PyXLL User Guide, Release 5.8.0

3.3.7 Polars DataFrames

New in PyXLL 5.6

Polars DataFrames can be used as function arguments and return types for Excel worksheet functions in a similar
way to Pandas DataFrames.

When used as an argument, the range specified in Excel will be converted into a Polars DataFrame as specified by
the function signature.

The dataframe type specifier is the same as the one used for pandas DataFrames. When passing a polars
DataFrame as an argument you need to specify the kind of DataFrame you want by setting kind=polars:

from pyxll import xl_func

@xl_func("dataframe<kind=polars>: dataframe", auto_resize=True)
def polars_dataframe_sum(df):

df is a polars.DataFrame
return df.sum()

When returning a polars DataFrame there is no need to specify the kind as that will be infered from the type of the
returned object.

The following shows returning a random polars DataFrame:

from pyxll import xl_func
import polars as pl
import numpy as np

@xl_func("int rows, int columns: dataframe", auto_resize=True)
def random_polars_dataframe(rows, columns):

data = np.random.rand(columns, rows)
column_names = [chr(ord('A') + x) for x in range(columns)]
return pl.DataFrame(data, columns=column_names)

Type Annotations

Python type annoations can be used instead of the type signature shown above.

Where type parameters are required you can use xl_arg and xl_return in conjunction with type annotations to
specify the type parameters.

The above functions can be written using type annoations as follows:

from pyxll import xl_func
import polars as pl
import numpy as np

(continues on next page)

3.3. Worksheet Functions 74

PyXLL User Guide, Release 5.8.0

(continued from previous page)

@xl_func(auto_resize=True)
def random_polars_dataframe(rows: int, columns: int) -> pl.DataFrame:

data = np.random.rand(columns, rows)
column_names = [chr(ord('A') + x) for x in range(columns)]
return pl.DataFrame(data, columns=column_names)

@xl_func(auto_resize=True)
def polars_dataframe_sum(df: pl.DataFrame) -> pl.DataFrame:

df is a polars.DataFrame
return df.sum()

Type Parameters

The following type parameters are available for dataframe argument and return types:

• dataframe, when used as an argument type

dataframe<kind=None, dtype=None, dtypes=None>

kind
Set to polars to specify that a polars DataFrame is required. If not set the default DataFrame type will
be used.

The default DataFrame type can be set by the default_dataframe_kind option in the [PYXLL]
section of the pyxll.cfg file.

Defaults to pandas if not set otherwise.

dtype
Datatype for the values in the dataframe. May not be set with dtypes.

dtypes
Dictionary of column name -> datatype for the values in the dataframe. May not be set with dtype.

The dictionary can be specified using standard Python dictionary syntax as part of a function signature
string. However, often it is more convenient to use the xl_arg or xl_return decorators. These allow
you to set type multiple complex parameters more easily, for example:

@xl_func
@xl_arg("df", dtypes={"A": "date"})
def your_function(df: pl.DataFrame):

....

Not all column dtypes need to be specified. Any that are not specified will default to var.

• dataframe, when used as a return type

dataframe<kind=None>

kind
Set to polars force the kind of DataFrame expected to be a polars DataFrame.

If not set, any supported kind of DataFrame can be used.

Tip: For specifying multiple or complex type parameters it can be easier to use the xl_arg and xl_return
decorators.

See @xl_arg and @xl_return Decorators for more details about how to use xl_arg and xl_return to specify
type parameters.

3.3. Worksheet Functions 75

PyXLL User Guide, Release 5.8.0

When passing large DataFrames between Python functions it is not always necessary, or desirable, to return the
full DataFrame to Excel. It can be expensive reconstructing the DataFrame from the Excel range each time.
In those cases you can use the object return type to return a handle to the Python object. Functions taking
dataframe<kind=polars> can accept object handles.

3.3.8 Asynchronous Functions

• Asynchronous Worksheet Functions

• The asyncio Event Loop

• Before Python 3.5

Excel has supported asynchronous worksheet functions since Office 2010. To be able to use asynchronous work-
sheet functions with PyXLL you will need to be using at least that version of Office.

Excel asynchronous worksheet functions are called as part of Excel’s calculation in the same way as other functions,
but rather than return a result, they can schedule some work and return immediately, allowing Excel’s calculation to
progress while the scheduled work for the asynchronous function continues concurrently. When the asynchronous
work has completed, Excel is notified.

Asynchronous functions still must be completed as part of Excel’s normal calculation phase. Using asynchronous
functions means that many more functions can be run concurrently, but Excel will still show as calculating until
all asynchronous functions have returned.

Functions that use IO, such as requesting results from a database or web server, are well suited to being made
into asynchronous functions. For CPU intensive tasks1 using the thread_safe option to xl_func may be a better
alternative.

If your requirement is to return the result of a very long running function back to Excel after recalculating has
completed, you may want to consider using an RTD (Real Time Data) function instead. An RTD function doesn’t
have to keep updating Excel, it can just notify Excel once when a single calculation is complete. Also, it can be
used to notify the user of progress which for very long running tasks can be helpful.

1 For CPU intensive problems that can be solved using multiple threads (i.e. the CPU intensive part is done without the Python Global
Interpreter Lock, or GIL, being held) use the thread_safe argument to xl_func to have Excel automatically schedule your functions using
a thread pool.

3.3. Worksheet Functions 76

PyXLL User Guide, Release 5.8.0

Asynchronous Worksheet Functions

Python 3.5 Required

Using the async keyword requires a minimum of Python 3.5.1 and PyXLL 4.2. If you do not have these
minimum requirements see Before Python 3.5.

If you are using a modern version of Python, version 3.5.1 or higher, writing asynchronous Excel worksheet func-
tions is as simple as adding the async keyword to your function definition. For earlier versions of Python, or for
PyXLL versions before 4.2, or if you just don’t want to use coroutines, see Before Python 3.5.

The following example shows how the asynchronous http package aiohttp can be used with PyXLL to fetch stock
prices without blocking the Excel’s calculation while it waits for a response2

from pyxll import xl_func
import aiohttp
import json

endpoint = "https://api.iextrading.com/1.0/"

@xl_func
async def iex_fetch(symbol, key):

"""returns a value for a symbol from iextrading.com"""
url = endpoint + f"stock/{symbol}/batch?types=quote"
async with aiohttp.ClientSession() as session:

async with session.get(url) as response:
assert response.status == 200
data = await response.read()

data = json.loads(data)["quote"]
return data.get(key, "#NoData")

The function above is marked async. In Python, as async function like this is called a coroutine. When the
coroutine decorated with xl_func is called from Excel, PyXLL schedules it to run on an asyncio event loop.

The coroutine uses awaitwhen calling response.read()which causes it to yield to the asyncio event loop while
waiting for results from the server. This allows other coroutines to continue rather than blocking the event loop.

Note that if you do not yield to the event loop while waiting for IO or another request to complete, you will be
blocking the event loop and so preventing other coroutines from running.

If you are not already familiar with how the async and await keywords work in Python, we recommend you read
the following sections of the Python documentation:

• Coroutines and Tasks

• asyncio — Asynchronous I/O

Warning: Async functions cannot be automatically resized using the “auto_resize” parameter to xl_func.
If you need to return an array using an async function and have it be resized, it is recommended to return the
array from the async function as an object by specifying object as the return type of your function, and then
use a second non-async function to expand the array.

For example:
@xl_func("var x: object")
async def async_array_function(x):

do some work that creates an array

2 Asynchronous functions are only available in Excel 2010. Attempting to use them in an earlier version will result in an error.

3.3. Worksheet Functions 77

https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio.html

PyXLL User Guide, Release 5.8.0

return array

@xl_func("object: var", auto_resize=True)
def expand_array(array):

no need to do anything here, PyXLL will do the conversion
return array

The asyncio Event Loop

Using the asyncio event loop with PyXLL requires a minimum of Python 3.5.1 and PyXLL 4.2. If you do not
have these minimum requirements see Before Python 3.5.

When a coroutine (async function) is called from Excel, it is scheduled on the asyncio event loop. PyXLL starts
this event loop on demand, the first time an asynchronous function is called.

For most cases, PyXLL default asyncio event loop is well suited. However the event loop that PyXLL uses can
be replaced by setting start_event_loop and stop_event_loop in the PYXLL section of the pyxll.cfg file. See
PyXLL Settings for more details.

To schedule tasks on the event loop outside of an asynchronous function, the utility function get_event_loop
can be used. This will create and start the event loop, if it’s not already started, and return it.

By default, the event loop runs on a single background thread. To schedule a function it is therefore recommended
to use loop.call_soon_threadsafe, or loop.create_task to schedule a coroutine.

Before Python 3.5

Or with Python >= 3.5. . .

Everything in this section still works with Python 3.5 onwards.

If you are using an older version of Python than 3.5.1, of if you have not yet upgraded to PyXLL 4.2 or later, you
can still use asynchronous worksheet functions but you will not be able to use the async keyword to do so.

Asynchronous worksheet functions are declared in the same way as regular worksheet functions by using the
xl_func decorator, but with one difference. To be recognised as an asynchronous worksheet function, one of
the function argument must be of the type async_handle.

The async_handle parameter will be a unique handle for that function call, represented by the class
XLAsyncHandle and it must be used to return the result when it’s ready. A value must be returned to Excel
using xlAsyncReturn or (new in PyXLL 4.2) the methods XLAsyncHandle.set_value and XLAsyncHandle.
set_error. Asynchronous functions themselves should not return a value.

The XLAsyncHandle instance is only valid during the worksheet recalculation cycle in which that the function
was called. If the worksheet calculation is cancelled or interrupted then calling xlAsyncReturn with an expired
handle will fail. For example, when a worksheet calculated (by pressing F9, or in response to a cell being updated
if automatic calculation is enabled) and some asynchronous calculations are invoked, if the user interrupts the
calculation before those asynchronous calculations complete then calling xlAsyncReturn after the worksheet
calculation has stopped will result in a exception being raised.

For long running calculations that need to pass results back to Excel after the sheet recalculation is complete you
should use a Real Time Data function.

Here’s an example of an asynchronous functionPage 77, 2

from pyxll import xl_func, xlAsyncReturn
from threading import Thread

(continues on next page)

3.3. Worksheet Functions 78

PyXLL User Guide, Release 5.8.0

(continued from previous page)

import time
import sys

class MyThread(Thread):
def __init__(self, async_handle, x):

Thread.__init__(self)
self.__async_handle = async_handle
self.__x = x

def run(self):
try:

here would be your call to a remote server or something like that
time.sleep(5)
xlAsyncReturn(self.__async_handle, self.__x)

except:
self.__async_handle.set_error(*sys.exc_info()) # New in PyXLL 4.2

no return type required as Excel async functions don't return a value
the excel function will just take x, the async_handle is added automatically by␣
→˓Excel
@xl_func("async_handle<int> h, int x")
def my_async_function(h, x):

start the request in another thread (note that starting hundreds of threads isn
→˓'t advisable
and for more complex cases you may wish to use a thread pool or another␣

→˓strategy)
thread = MyThread(h, x)
thread.start()

return immediately, the real result will be returned by the thread function
return

The type parameter to async_handle (e.g. async_handle<date>) is optional. When provided, it is used to
convert the value returned via xlAsyncReturn to an Excel value. If omitted, the var type is used.

3.3.9 Handling Errors

• Exceptions raised by a UDF

• Passing Errors as Values

• Retrieving Error Information

3.3. Worksheet Functions 79

PyXLL User Guide, Release 5.8.0

Exceptions raised by a UDF

Whenever an unhandled exception is raised in a Python function, PyXLL will write it to the log file and return an
error to Excel.

If no error handler is set, an Excel error code will be returned. The exact error code returned depends on the
exception type as follows:

Excel error Python exception type
#NULL! LookupError
#DIV/0! ZeroDivisionError
#VALUE! ValueError
#REF! ReferenceError
#NAME! NameError
#NUM! ArithmeticError
#NA! RuntimeError

You can customize PyXLL’s error handling with the error-handler setting in the PYXLL section of the pyxll.cfg
config file. You specify the function as a list of dotted references, much as you would for a Python import statement.

[PYXLL]
;
; Set custom error handler function
;
error_handler = your_module.error_handler_function

The error handler should be a function that takes three arguments: the exception type, the exception value and
traceback of the uncaught exception, e.g.:

def error_handler_function(exc_type, exc_value, exc_traceback):
"""
Convert a Python exception to a string value
of form "<exception_type_name>: <value".
"""
error = "##" + getattr(exc_type, "__name__", "Error")
msg = str(exc_value)
if msg:

error += ": " + msg
return error

When the error handler is executed, the return value of the error handler becomes the value of the cell from which
it was referenced. See Error Handling for details.

Passing Errors as Values

Sometimes it is useful to be able to pass a cell value from Excel to python (or vice-versa) when the cell value is
actually an error.

1. Any function with return type var (or a type that derives from it) will return an error code to Excel if an
Exception is returned. The exact error code depends on the type of the exception, following the table in the
section above.

This is useful when you want to return an array of data (or other array-like data, e.g. a pandas DataFrame)
and where only some values should be returned as errors. By setting the values that should be errors to
instances of exceptions they will appear in Excel as errors.

2. Alternatively, the special type: float_nan can be used.

float_nan behaves in almost exactly the same way as the normal float type. It can be used as an array type, or
as an element type in a numpy array, e.g. numpy_array<float_nan>. The only difference is that if the Excel

3.3. Worksheet Functions 80

PyXLL User Guide, Release 5.8.0

value is an error or a non-numeric type (e.g. an empty cell), the value passed to python will be float(‘nan’)
or #QNAN!, which is equivalent to numpy.nan.

The two different float types exist because sometimes you don’t want your function to be called if there’s an
error with the inputs, but sometimes you do. There is a slight performance penalty for using the float_nan
type when compared to a plain float.

PyXLL maps Excel errors to Python Exception types as specified in the following table:

Excel error Python exception type
#NULL! LookupError
#DIV/0! ZeroDivisionError
#VALUE! ValueError
#REF! ReferenceError
#NAME! NameError
#NUM! ArithmeticError
#NA! RuntimeError

Retrieving Error Information

When a Python function is called from an Excel worksheet, if an uncaught exception is raised PyXLL caches the
exception and traceback as well as logging it to the log file.

The last exception raised while evaluating a cell can be retrieved by calling PyXLL’s get_last_error function.

get_last_error takes a cell reference and returns the last error for that cell as a tuple of (exception type, exception
value, traceback). The cell reference may either be a XLCell or a COM Range object (the exact type of which
depend on the com_package setting in the config.

The cache used by PyXLL to store thrown exceptions is limited to a maximum size, and so if there are more cells
with errors than the cache size the least recently thrown exceptions are discarded. The cache size may be set via
the error_cache_size setting in the config.

When a cell returns a value and no exception is thrown any previous error is not discarded, because to do so would
add additional performance overhead to every function call.

3.3. Worksheet Functions 81

PyXLL User Guide, Release 5.8.0

from pyxll import xl_func, xl_menu, xl_version, get_last_error
import traceback

@xl_func("xl_cell: string")
def python_error(cell):

"""Call with a cell reference to get the last Python error"""
exc_type, exc_value, exc_traceback = get_last_error(cell)
if exc_type is None:

return "No error"

return "".join(traceback.format_exception_only(exc_type, exc_value))

@xl_menu("Show last error")
def show_last_error():

"""Select a cell and then use this menu item to see the last error"""
selection = xl_app().Selection
exc_type, exc_value, exc_traceback = get_last_error(selection)

if exc_type is None:
xlcAlert("No error found for the selected cell")
return

msg = "".join(traceback.format_exception(exc_type, exc_value, exc_traceback))
if xl_version() < 12:

msg = msg[:254]

xlcAlert(msg)

3.3.10 Function Documentation

When a python function is exposed to Excel with the xl_func decorator the docstring of that function is visible
in Excel’s function wizard dialog.

Parameter documentation may also be provided help the user know how to call the function. The most convenient
way to add parameter documentation is to add it to the docstring as shown in the following example:

from pyxll import xl_func

@xl_func
def py_round(x, n):

"""
Return a number to a given precision in decimal digits.

:param x: floating point number to round
:param n: number of decimal digits
"""
return round(x, n)

PyXLL automatically detects parameter documentation written in the commonly used Sphinx style shown above.
They will appear in the function wizard as help strings for the parameters when selected. The first line will be used
as the function description.

Parameter documentation may also be added by passing a dictionary of parameter names to help strings to xl_func
as the keyword argument arg_descriptions if it is not desirable to add it to the docstring for any reason.

As you can see, the arguments and documentation you provide are fully integrated with Excel’s function wizard:

3.3. Worksheet Functions 82

https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#python-signatures

PyXLL User Guide, Release 5.8.0

3.3.11 Variable and Keyword Arguments

• Variable Arguments (*args)

• Keyword Arguments (**kwargs)

Variable Arguments (*args)

In Python it is possible to declare a function that takes a variable number of positional arguments using the special
*args notation. These functions can be exposed to Excel as worksheet functions that also take a variable number
of arguments.

The function shown below uses the first argument as a separator ond returns a string made up of the string values
of all other arguments separated by the separator.

from pyxll import xl_func

(continues on next page)

3.3. Worksheet Functions 83

PyXLL User Guide, Release 5.8.0

(continued from previous page)

@xl_func
def py_join(sep, *args):

"""Joins a number of args with a separator"""
return sep.join(map(str, args))

You can also set the type of the args in the function signature. When doing that the type for all of the variable
arguments must be the same. For mixed types, use the var type.

from pyxll import xl_func

@xl_func("str sep, str *args: str")
def py_join(sep, *args):

"""Joins a number of args with a separator"""
return sep.join(args)

Unlike Python, Excel has some limits on the number of arguments that can be provided to a function. For practical
purposes the limit is high enough that it is unlikely to be a problem. The absolute limit for the number of arguments
is 255, however the actual limit for a function may be very slightly lower1.

Keyword Arguments (**kwargs)

New in PyXLL 5.8

Python functions can take an arbitrary number of named arguments using the special **kwargs argument.

A keyword argument is where you pass an argument to a function by name. When using **kwargs, any named
argument that is not one of the function’s parameter names is added to a dictionary and passed to the function in
the kwargs dictionary.

Excel does not support passing arguments by name when calling Excel worksheet functions (UDFs).

When registering a Python function to be called from Excel that has **kwargs the Excel function will expect a 2d
array of values for the kwargs argument. PyXLL will convert that to a dictionary and pass that dictionary to the
Python function as the **kwargs.

The array passed from Excel to the Python function should be a list of key, value pairs.

For example, the following Python function takes **kwargs and can be called from Excel passing a range of key,
value pairs:

from pyxll import xl_func

@xl_func
def kwargs_example(**kwargs):

return "foo={foo}; bar={bar}".format(**kwargs)

The function can be called from Excel, passing the **kwargs as an array of key value pairs:
1 The technical reason this limit is lower is because when the function is registered with Excel, a string is used to tell Excel all the argument

and return types, as well as any modifiers for things like whether the function is thread safe or not. The total length of this string cannot exceed
255 characters so, even though Excel might be able to handle 255 arguments, it may not be possible to register a function with 255 arguments
because of the length limit on that string.

3.3. Worksheet Functions 84

PyXLL User Guide, Release 5.8.0

Arrays can be passed directly to Excel functions, without needing to refer to a range on a worksheet. The syntax for
this varies depending on your language settings. In English, the format to pass an array is { "key1", value1;
"key2", value2; "keyN", valueN }. , is the item separator, and ; is the row separator. In some languages
the item and row separators are reversed.

Specifying types for **kwargs is done in the same way as for dictionay types. See Dictionary Types for full details
of how to specify types for dictionaries.

If using Python 3.12 or higher, you can also use the standard TypedDict type annotation for **kwargs.

from typing import TypedDict
from pyxll import xl_func

class MyTypedKwargs(TypedDict):
foo: int
bar: int

@xl_func
def kwargs_example(**kwargs: MyTypedKwargs) -> str:

return "foo={foo}; bar={bar}".format(**kwargs)

Note: It is not possible to combine *args and **kwargs for functions that are exposed to Excel. This is due to the
constraints of how Excel functions can be called.

3.3. Worksheet Functions 85

PyXLL User Guide, Release 5.8.0

3.3.12 Recalculating On Open

It can be useful to have worksheet functions (UDFs) that are automatically called when a workbook is opened.
Typically this is achieved by making the function volatile, but making a function volatile means that it is recalculated
every time Excel calculates and not just when the workbook is opened.

PyXLL functions can be made to automatically recalculate when a workbook is opened by passing
recalc_on_open=True to xl_func.

The recalculating on open feature makes use of Workbook Metadata.

• Use-Cases

• Example

• Default Behaviour

• Disabling Completely

Use-Cases

Use-cases for wanting to recalculate a function when a workbook is opened include:

• Opening a database connection to be used by other functions.

• Loading market data or other data required by the workbook.

• Values that depend on the current date or time, but should not constantly update.

• Functions returning objects, as the object needs to be created in order for the sheet to calculate.

• RTD functions, as they need to be called once to start ticking.

Example

The below function uses the recalc_on_open=True option to tell PyXLL that it should be recalculated when the
saved workbook is opened. For this to work, this function is called from a cell (eg =recalc_on_open_func())
and then the workbook is saved. The next time that workbook is opened, the cell containing the function will be
marked as dirty and if automatic calculations are enabled it will be recalculated.

from pyxll import xl_func

@xl_func(recalc_on_open=True)
def recalc_on_open_func():

print("recalc_on_open_func called!")
return "OK!"

Warning: When a workbook is opened cells in that workbook will be recalculated if the function in that cell
was marked as needing to be recalculated on open at the time the workbook was saved.

Changing the recalc_on_open option for a function after the workbook has been saved will have no effect
until the workbook has been recalculated and saved again.

Similarly, if opening a workbook saved with a version of PyXLL prior to 4.5, the workbook will need to be
recalculated and saved before it will recalculate on being opened.

3.3. Worksheet Functions 86

PyXLL User Guide, Release 5.8.0

Default Behaviour

The default behaviour for non-volatile worksheet functions is not to recalculate on open unless the
recalc_on_open option is set in xl_func.

The recalc_on_open feature is especially useful for RTD functions and for functions returning Python objects.
The default behaviour for these two types of functions can be modified such that the recalc_on_open feature
applies by default.

• Real Time Data (RTD) Functions
For RTD functions the option recalc_rtd_on_open can be set in the PYXLL section of the pyxll.cfg
config file. If set, all RTD functions will recalculate on opening unless specifically disabled by setting
recalc_on_open=False in the xl_func decorator.

[PYXLL]
; Enable recalc on open for all RTD functions
recalc_rtd_on_open = 1

• Functions Returning Objects
Similarly, any worksheet function that explicitly returns an object can be set to recalculate on opening via
the config setting recalc_cached_objects_on_open.

To enable recalculating all object functions on open set recalc_cached_objects_on_open to 1.

[PYXLL]
; Eenable recalc on open for all functions returning objects
recalc_cached_objects_on_open = 1

With this setting enabled the following function would be recalculated when a workbook using it was opened,
without needing to explicitly set recalc_on_open=True in xl_func.

from pyxll import xl_func

@xl_func("int x: object")
def create_object(x)

obj = SomeClass(x)
return obj

This can be overridden for individual functions by passing recalc_on_open=False to xl_func.

As with the recalc_on_open setting, these settings only affect what metadata gets saved in the workbook. Chang-
ing the recalc_cached_objects_on_open option after the workbook has been saved will have no effect until
the workbook has been recalculated and saved again.

Disabling Completely

If you do not want any functions to be recalculated when opening a workbook set disable_recalc_on_open =
1 in your pyxll.cfg file.

This setting prevents any cells marked by PyXLL as needing to be recalculated from being recalculated, regardless
of what settings were used at the time the file was saved. It does not prevent Excel from calculating other cells that
need recalculating, such as volatile cells.

[PYXLL]
disable_recalc_on_open = 1

3.3. Worksheet Functions 87

PyXLL User Guide, Release 5.8.0

3.3.13 Interrupting Functions

Long running functions can cause Excel to become unresponsive and sometimes it’s desirable to allow the user to
interrupt functions before they are complete.

Excel allows the user to signal they want to interrupt any currently running functions by pressing the Esc
key. If a Python function has been registered with allow_abort=True (see xl_func) PyXLL will raise a
KeyboardInterrupt exception if the user presses Esc during execution of the function.

This will usually cause the function to exit, but if the KeyboardInterrupt exception is caught then notrmal Python
exception handling takes place. Also, as it is a Python exception that’s raised, if the Python function is calling out to
something else (e.g. a C extension library) the exception may not be registered until control is returned to Python.

Enabling allow_abort registers a Python trace function for the duration of the call to the function. This can have
a negative impact on performance and so it may not be suitable for all functions. The Python interpreter calls the
trace function very frequently, and PyXLL checks Excel’s abort status during this trace function. To reduce the
performance overhead of calling this trace function, PyXLL throttles how often it checks Excel’s abort status and
this throttling can be fine-tuned with the config settings abort_throttle_time and abort_throttle_count. See PyXLL
Settings for more details.

The allow_abort feature can be enabled for all functions by setting it in the configuration. This feature should be
used with caution because of the performance implications outlined above.

[PYXLL]
;
; Make all Excel UDFs inherently interruptable
;
allow_abort = 1

It is not enabled by default because of the performance impact, and also because it can interfere with the operation
of some remote debugging tools that use the same Python trace mechanism.

3.4 Real Time Data

• Introduction

• RTD Generators

– Async RTD Generators

• Using the RTD Class

– RTD Class Example

– RTD Class Async Example

• RTD Data Types

• Throttle Interval

• Starting RTD Functions Automatically

3.4. Real Time Data 88

PyXLL User Guide, Release 5.8.0

3.4.1 Introduction

Real Time Data (or RTD) is data that updates asynchronously, according to its own schedule rather than just when
it is re-evaluated (as is the case for a regular Excel worksheet function).

Examples of real time data include stock prices and other live market data, server loads or the progress of an
external task.

Real Time Data has been a first-class feature of Excel since Excel 2002. It uses a hybrid push-pull mechanism
where the source of the real time data notifies Excel that new data is available, and then some small time later
Excel queries the real time data source for its current value and updates the value displayed.

PyXLL provides a convenient and simple way to stream real time data to Excel without the complexity of writing
(and registering) a Real Time Data COM server.

Real Time Data functions are registered in the same way as other worksheet functions using the xl_func decorator.
By registering a Python generator function, or a function that returns an RTD object, streams of values can be
returned to Excel as a real time data function.

RTD functions have the return type rtd.

3.4.2 RTD Generators

New in PyXLL 5.6

The simplest way to write an Excel RTD (Real Time Data) function using PyXLL is to write it as a Python generator.

A Python generator is a special type of Python function that yields a stream of results instead of just a single result.

The following is an example of a Python generator that yields a random number every 5 seconds:

import random
import time

def random_numbers():
Loop forever
while True:

Yield a random number
yield random.random()

Wait 5 seconds before continuing
time.sleep(5)

To turn this into an RTD function in Excel all that’s needed is to add the xl_func decorator with the rtd return
type:

from pyxll import xl_func
import random
import time

@xl_func(": rtd")
def random_numbers():

while True:
yield random.random()
time.sleep(5)

When this random_numbers function is called from Excel it will tick every 5 seconds with a new random number.

To prevent the long running Python generator function from blocking the main Excel thread RTD generators are
always run on a background thread. One thread is created for each generator. For more sophisticated thread
management use a function that returns an RTD instance instead (see Using the RTD Class).

3.4. Real Time Data 89

PyXLL User Guide, Release 5.8.0

Each time the generator yields a value Excel is notified a new value is ready. Excel may not display every value as
it throttles the updates that is displays (see Throttle Interval).

It’s important not to create a tight loop that constantly updates as doing so will prevent other threads from having
time to run (including the main Excel thread) and will cause Excel to hang.

Warning: Unlike other PyXLL functions, RTD generators are always run on a background thread.

Async RTD Generators

New in PyXLL 5.6

Async RTD generators work in a similar way to the RTD generators described above. Instead of running in a
separate thread async RTD generators are run on PyXLL asyncio event loop.

Async generators are well suited to IO bound tasks such as receiving updates from a remote server. Care should be
taken so that the asyncio event loop isn’t blocked by ensuring that tasks are properly asynchronous and are awaited
correctly.

The same example as above can be re-written as an async generator by replacing time.sleep with asyncio.
sleep:

from pyxll import xl_func
import random
import asyncio

@xl_func(": rtd")
async def async_random_numbers():

Loop forever
while True:

Yield a random number
yield random.random()

Wait 5 seconds before continuing without blocking the event loop
await asyncio.sleep(5)

When this async_random_numbers function is called from Excel it will tick every 5 seconds with a new random
number.

Each time the generator yields a value Excel is notified a new value is ready. Excel may not display every value as
it throttles the updates that is displays (see Throttle Interval).

Warning: Async RTD generators share the same asyncio loop as other async functions. Blocking the asyncio
event loop will cause delays in other functions, or prevent them from running entirely.

See The asyncio Event Loop for more details.

3.4. Real Time Data 90

PyXLL User Guide, Release 5.8.0

3.4.3 Using the RTD Class

For more control over the RTD behaviour of an Real Time Data function an RTD object can be returned from an
RTD function instead of using a generator.

The RTD class has a value property. Setting this property notifies Excel that a new value is ready. RTD functions
that use the RTD class return an RTD object and update the value on that returned object each time a new value is
available (for example, by scheduling an update function on a background thread). Typically this is done by writing
a derived class that handles updating its own value.

If multiple function calls from different cells return the same RTD object then those cells are subscribed to the same
object. All the cells will update whenever the value property of the one RTD object is set.

RTD Class Example

The following example shows a class derived from RTD that periodically updates its value to the current time.

It uses a separate thread to set the value property, which notifies Excel that new data is ready.

from pyxll import xl_func, RTD
from datetime import datetime
import threading
import logging
import time

_log = logging.getLogger(__name__)

class CurrentTimeRTD(RTD):
"""CurrentTimeRTD periodically updates its value with the current
date and time. Whenever the value is updated Excel is notified and
when Excel refreshes the new value will be displayed.
"""

(continues on next page)

3.4. Real Time Data 91

PyXLL User Guide, Release 5.8.0

(continued from previous page)

def __init__(self, format):
initial_value = datetime.now().strftime(format)
super(CurrentTimeRTD, self).__init__(value=initial_value)
self.__format = format
self.__running = True
self.__thread = threading.Thread(target=self.__thread_func)
self.__thread.start()

def connect(self):
Called when Excel connects to this RTD instance, which occurs
shortly after an Excel function has returned an RTD object.
_log.info("CurrentTimeRTD Connected")

def disconnect(self):
Called when Excel no longer needs the RTD instance. This is
usually because there are no longer any cells that need it
or because Excel is shutting down.
self.__running = False
_log.info("CurrentTimeRTD Disconnected")

def __thread_func(self):
while self.__running:

Setting 'value' on an RTD instance triggers an update in Excel
new_value = datetime.now().strftime(self.__format)
if self.value != new_value:

self.value = new_value
time.sleep(0.5)

In order to access this real time data in Excel all that’s required is a worksheet function that returns an instance of
this CurrentTimeRTD class.

@xl_func("string format: rtd")
def rtd_current_time(format="%Y-%m-%d %H:%M:%S"):

"""Return the current time as 'real time data' that
updates automatically.

:param format: datetime format string
"""
return CurrentTimeRTD(format)

Note that the return type of this function is rtd.

When this function is called from Excel the value displayed will periodically update, even though the function
rtd_current_time isn’t volatile and only gets called once.

=rtd_current_time()

3.4. Real Time Data 92

PyXLL User Guide, Release 5.8.0

RTD Class Async Example

Instead of managing your own background threads and thread pools when writing RTD functions, you can use
PyXLL’s asyncio event loop instead (new in PyXLL 4.2 and requires Python 3.5.1 or higher).

This can be useful if you have RTD functions that are waiting on IO a lot of the time. If you can take advantage of
Python’s async and await keywords so as not to block the event loop then making your RTD function run on the
asyncio event loop can make certain things much simpler.

The methods RTD.connect and RTD.disconnect can both be async methods. If they are then PyXLL will
schedule them automatically on it’s asyncio event loop.

The example below shows how using the event loop can eliminate the need for your own thread management.

See The asyncio Event Loop for more details.

from pyxll import RTD, xl_func
import asyncio

class AsyncRTDExample(RTD):

def __init__(self):
super().__init__(value=0)
self.__stopped = False

async def connect(self):
while not self.__stopped:

Yield to the event loop for 1s
await asyncio.sleep(1)

Update value (which notifies Excel)
self.value += 1

async def disconnect(self):
self.__stopped = True

@xl_func(": rtd<int>")
def async_rtd_example():

return AsyncRTDExample()

3.4.4 RTD Data Types

RTD functions can return all the same data types as normal Worksheet Functions, including array types and cached
Python objects.

By default, the rtd return type will use the same logic as a worksheet function with no return type specified or the
var type.

To specify the return type explicity you have to include it in the function signature as a parameter to the rtd type.

For example, the following is how an RTD function that returns Python objects via the internal object cache would
be declared:

@xl_func("string x: rtd<object>")
def rtd_object_func(x):

MyRTD sets self.value to a non-trivial Python object
return MyRTD(x)

RTD data types can be used for RTD generators in the same way.

3.4. Real Time Data 93

PyXLL User Guide, Release 5.8.0

Although RTD functions can return array types, they cannot be automatically resized and so the array formula
needs to be entered manually using Ctrl+Shift+Enter (see Array Functions).

3.4.5 Throttle Interval

Excel throttles the rate of updates made via RTD functions. Instead of updating every time it is notified of new
data it waits for a period of time and then updates all cells with new data at once.

The default throttle time is 2,000 milliseconds (2 seconds). This means that even if you are setting value on an RTD
instance or yielding values from a generator more frequently you will not see the value in Excel updating more
often than once every two seconds.

The throttle interval can be changed by setting Application.RTD.ThrottleInterval (in milliseconds). Setting the
throttle interval is persistent across Excel sessions (meaning that if you close and restart Excel then the value you
set the interval to will be remembered).

The following code shows how to set the throttle interval in Python.

from pyxll import xl_func, xl_app

@xl_func("int interval: string")
def set_throttle_interval(interval):

xl = xl_app()
xl.RTD.ThrottleInterval = interval
return "OK"

Alternatively it can be set in the registry by modifying the following key. It is a DWORD in milliseconds.

HKEY_CURRENT_USER\Software\Microsoft\Office\10.0\Excel\Options\RTDThrottleInterval

3.4.6 Starting RTD Functions Automatically

When you enter an RTD function in an Excel formula is begins ticking automatically because the function has been
called. When loading a workbook containing RTD functions however, they will not start ticking until the function
is called.

To enable RTD functions to begin ticking as soon as a workbook is opened PyXLL RTD functions can be marked
as needed to be recalculated when the workbook opens by using the Recalculating On Open feature of PyXLL.

To make a function recalculate when the workbook is loaded pass recalc_on_open=True to xl_func. If applied
to an RTD function this will cause the RTD function to start ticking when the workbook is loaded.

You can change the default behaviour so that recalc_on_open is True by default for RTD functions (unless
explicitly marked otherwise) by setting recalc_rtd_on_open = 1, e.g.

[PYXLL]
recalc_rtd_on_open = 1

Warning: The default behaviour for RTD functions has changed between PyXLL 4 and PyXLL 5.

From PyXLL 5 onwards RTD functions will no longer start automatically when a workbook is opened unless
configured as above. This is consistent with other UDFs that are not called automatically when workbooks
open by default.

3.4. Real Time Data 94

PyXLL User Guide, Release 5.8.0

3.5 Cell Formatting

When returning values or arrays from a worksheet function, or when setting values on a sheet using a macro
function, often you will also want to set the formatting of the values in Excel. This can be to make sure a returned
value has the correct date or number format, or styling a whole table.

Standard formatters are provided for common cases, and you can also write your own formatters to achieve the
exact style you need.

3.5.1 Formatting Worksheet Functions

Worksheet functions registered using xl_func can format their results using a Formatter.

To specify what formatter should be used for a function use the formatter kwarg to the xl_func decorator. For
example:

from pyxll import xl_func, Formatter
import datetime as dt

date_formatter = Formatter(number_format="yyyy-mm-dd")

@xl_func(formatter=date_formatter)
def get_date():

return dt.date.today()

When the function is called from Excel, any previous formatting is cleared and the formatter is applied to the cell.

The standard Formatter handles many common formatting requirements and takes the following options:

For-
matter
kwargs
inte-
rior_color

Color value to set the interior color to.

text_color Color value to set the text color to.
bold If True, set the text style to bold.
italic If True, set the text style to italic.
font_size Value to set the font size to.
num-
ber_format

Excel number format to use.

auto_fit Auto-fit to the content of the cells.
May be any of: True (fit column width); False (don’t fit); “columns” (fit column width); “rows”
(fit row width); “both” (fit column and row width);

Color values can be obtained using the static method Formatter.rgb.

More complex formatting can be done using a custom formatter.

The Formatter clears all formatting before applying the new formatting, but you can also control how the format-
ting is cleared using a custom formatter.

Note: When formatting is applied to Dynamic Array functions PyXLL will keep track of the current array size
and save it in the Workbook Metadata.

This is so the previous range can be cleared before re-applying formatting. Without doing this the formatting would
remain if the array contracted.

3.5. Cell Formatting 95

PyXLL User Guide, Release 5.8.0

3.5.2 Pandas DataFrame Formatting

Array formulas can also be formatted, and PyXLL provides the DataFrameFormatter class specifically for func-
tions that return pandas DataFrames.

from pyxll import xl_func, xl_return, Formatter, DataFrameFormatter
import pandas as pd

df_formatter = DataFrameFormatter(
index=Formatter(bold=True, interior_color=Formatter.rgb(0xA9, 0xD0, 0x8E)),
header=Formatter(bold=True, interior_color=Formatter.rgb(0xA9,0xD0,0x8E)),
rows=[

Formatter(interior_color=Formatter.rgb(0xE4, 0xF1, 0xDB)),
Formatter(interior_color=Formatter.rgb(0xF4, 0xF9, 0xF1)),

],
columns={

"C": Formatter(number_format="0.00%")
}

)

@xl_func(formatter=df_formatter, auto_resize=True)
@xl_return("dataframe<index=True>")
def get_dataframe():

df = pd.DataFrame({
"A": [1, 2, 3],
"B": [4, 5, 6],
"C": [0.3, 0.6, 0.9]

})
return df

When the function is called from Excel, any previous formatting is cleared and the formatter is applied to the range
for the DataFrame.

The DataFrameFormatter class handles many common formatting requirements, but more complex formatting
can be done by a custom formatter.

If the size of the DataFrame changes when inputs change, as long as the formula stays the same the previous range
will be cleared before formatting the new range. This allows the returned range to contract without the formatting
being left behind.

Conditional Formatting

As well as formatting specific rows and columns based on their position in the DataFrame as shown above, it is
also possible to apply formatting that is conditional on the values in the DataFrame.

This is done using the ConditionalFormatter class.

The ConditionalFormatter class is constructed with an expression string and a formatter object. The expression
string is passed to the DataFrame.eval method which returns a Series where that expression evaluates to True.
The formatter will be applied to the rows where that expression is True. The formatting can be further restricted
to only apply to specific columns.

A list of ConditionalFormatter objects can be passed as the conditional_formatters argument to
DataFrameFormatter. The conditional formatters are applied in order after any other formatting has been ap-
plied.

The following example shows how to color rows green where column A is greater than 0 and red where column A
is less than 0.

3.5. Cell Formatting 96

PyXLL User Guide, Release 5.8.0

from pyxll import DataFrameFormatter, ConditionalFormatter, Formatter, xl_func
import pandas as pd

green_formatter = Formatter(interior_color=Formatter.rgb(0x00, 0xff, 0x00))
red_formatter = Formatter(interior_color=Formatter.rgb(0xff, 0x00, 0x00))

a_gt_zero = ConditionalFormatter("A > 0", formatter=green_formatter)
b_lt_zero = ConditionalFormatter("A < 0", formatter=red_formatter)

df_formatter = DataFrameFormatter(conditional_formatters=[
a_gt_zero,
b_lt_zero])

@xl_func(": dataframe<index=False>", formatter=df_formatter, auto_resize=True)
def get_dataframe():

df = pd.DataFrame({
"A": [-1, 0, 1],
"B": [1, 2, 3],
"C": [4, 5, 6]

})
return df

To restrict the formatting to certain columns the columns argument to ConditionalFormatter can be used. This
can be a list of column names or a function that takes a DataFrame and returns a list of columns.

Custom Conditional Formatters

For more complex conditional formatting a custom conditional formatter class can be derived from
ConditionalFormatterBase.

3.5. Cell Formatting 97

PyXLL User Guide, Release 5.8.0

The method ConditionalFormatterBase.get_formatters should be implemented to return a DataFrame of
Formatter objects where any formatting is to be applied.

The returned DataFrame must have the same index and columns as the DataFrame being formatted.

The following example shows how a custom ConditionalFormatter can be written that changes the background
color of cells in a DataFrame based on their value.

from pyxll import xl_func, DataFrameFormatter, ConditionalFormatterBase, Formatter
from matplotlib import colors, cm
import pandas as pd

class RainbowFormatter(ConditionalFormatterBase):

def __init__(self, column, min=0, max=100, cmap="rainbow"):
self.column = column
self.min = min
self.max = max
self.cmap = cmap

def get_formatters(self, df):
Create an empty DataFrame with the same index and columns as df.
formatters = pd.DataFrame(None, index=df.index, columns=df.columns)

Normalize the column values into the range [0, 1]
normalizer = colors.Normalize(self.min, self.max)
values = normalizer(df[self.column])

(continues on next page)

3.5. Cell Formatting 98

PyXLL User Guide, Release 5.8.0

(continued from previous page)

Get a list of (r,g,b,a) colors from a colormap.
colormap = cm.get_cmap(self.cmap)
color_values = colormap(values)

Create the Formatter objects, remembering Formatter.rgb takes integers from␣
→˓0 to 255.

This could use any Formatter class, including your own custom formatters.
formatters[self.column] = [

Formatter(interior_color=Formatter.rgb(int(r * 255), int(g * 255), int(b␣
→˓* 255)))

for r, g, b, a in color_values
]

Return the DataFrame containing Formatter objects for the cells we want to␣
→˓format

return formatters

Construct a DataFrameFormatter using our custom RainbowFormatter class.
Multiple formatters can be combined by adding them together.
df_formatter = DataFrameFormatter(

header=Formatter(interior_color=Formatter.rgb(255, 255, 0)),
conditional_formatters=[

RainbowFormatter("A"),
RainbowFormatter("B")

]
)

This worksheet function uses our DataFrameFormatter and RainbowFormatters
@xl_func("int min, int max, int step: dataframe", formatter=df_formatter)
def custom_formatter_test(min=0, max=100, step=5):

df = pd.DataFrame({"A": range(min, max, step), "B": range(max, min, -step)})
return df

3.5.3 Custom Formatters

Although the standard formatters provide basic functionality to handle many common cases, you may want to apply
your own formatting. This can be achieved using a custom formatter derived from Formatter.

For applying basic styles in your own formatter you can use Formatter.apply_style, but for everything else
you can use the Excel Object Model.

With VBA it’s possible to style cells and ranges by changing the background color, adding borders, and changing
the font among other things. In Python it’s no different as the entire Excel Object Model is available to you in
Python, just as it is in VBA.

To write a custom formatter create a class that inherits from Formatter. The methods Formatter.apply,
Formatter.apply_cell and Formatter.clear can be overridden to apply any formatting you require.

For example, if you wanted to apply borders using a formatter you would do the following:

from pyxll import Formatter, xl_func

Needed to get VBA constants
from win32com.client import constants

(continues on next page)

3.5. Cell Formatting 99

PyXLL User Guide, Release 5.8.0

(continued from previous page)

class BorderFormatter(Formatter):

def apply(self, cell, *args, **kwargs):
get the Excel.Range COM object from the XLCell
xl_range = cell.to_range()

add a border to each edge
for edge in (constants.xlEdgeLeft,

constants.xlEdgeRight,
constants.xlEdgeTop,
constants.xlEdgeBottom):

border = xl_range.Borders[edge]
border.LineStyle = constants.xlContinuous
border.ColorIndex = 0
border.TintAndShade = 0
border.Weight = constants.xlThin

call the super class to apply any other styles
super().apply(cell, *args, **kwargs)

border_formatter = BorderFormatter()

@xl_func(formatter=border_formatter, auto_resize=True)
def func_with_borders():

return [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]

]

You can use the VBA Macro Recorder to record a VBA Macro to apply any style you want, and then examine the
recorded VBA code to see what you need to do. The recorded VBA code can be transformed into Python code.

For example, the following VBA code was recorded setting the left edge border. From the recorded code we can
see what needs to be done and translate that into the required Python code as demonstrated above.

Sub Macro1()
Range("D4:G8").Select

With Selection.Borders(xlEdgeLeft)
.LineStyle = xlContinuous
.ColorIndex = 0
.TintAndShade = 0
.Weight = xlThin

End With

End Sub

See Python as a VBA Replacement for more information on how to translate VBA code to Python.

3.5. Cell Formatting 100

PyXLL User Guide, Release 5.8.0

Combining Multiple Formatters

Formatters can be combined so you do not have to implement every combination in a single formatter.

Formatters are combined by adding them to each other.

For example, to combine the above formatter with the standard DataFrameFormatter you add them together.

from pyxll import xl_func, DataFrameFormatter

df_formatter = DataFrameFormatter()
add_borders = BorderFormatter()

df_formatter_with_borders = df_formatter + add_borders

@xl_func(formatter=df_formatter_with_borders, auto_resize=True)
@xl_return("dataframe<index=True>")
def get_dataframe():

df = pd.DataFrame({
"A": [1, 2, 3],
"B": [4, 5, 6],
"C": [0.3, 0.6, 0.9]

})
return df

3.5.4 Formatting in Macros Functions

Formatters can also be used from macro functions, as well as from worksheet functions.

To apply a formatter in a macro function use the formatter option to when setting XLCell.value.

For example, to use the standard DataFrameFormatter when setting a DataFrame to a range from an Excel macro
you would do the following:

from pyxll import xl_macro, xl_app, XLCell, DataFrameFormatter
import pandas as pd

@xl_macro
def set_dataframe():

Get the current selected cell
xl = xl_app()
selection = xl.Selection

Get an XLCell instance for the selection
cell = XLCell.from_range(selection)

Create a DataFrame
df = pd.DataFrame({

"A": [1, 2, 3],
"B": [4, 5, 6],
"C": [0.3, 0.6, 0.9]

})

Construct the formatter to be applied
formatter = DataFrameFormatter()

Set the 'value' on the current cell with the formatter
and using the auto-resize option

(continues on next page)

3.5. Cell Formatting 101

PyXLL User Guide, Release 5.8.0

(continued from previous page)

cell.options(type="dataframe<index=True>",
auto_resize=True,
formatter=formatter).value = df

The same method can be used from a menu function or ribbon action.

Warning: Formatting cells in Excel uses an Excel macro. Macros in Excel do not preseve the “UnDo” list,
and so after any formatting has been applied you will not be able to undo your recent actions.

Warning: Formatting is new in PyXLL 4.5.

For prior versions formatting can be applied using the Excel Object Model.

Calls to Excel cannot be made from an xl_func function, but can be scheduled using schedule_call.

Note: Formatters applied to Dynamic Array functions make use of Workbook Metadata to keep track of formatting
applied in order to clear it if the array later contracts.

3.6 Charts and Plotting

As well as using Excel’s own charting capabilities, PyXLL allows you to use Python’s other plotting libraries within
Excel.

PyXLL has support for the following Python plotting libraries, and can be extended to support other via custom
code.

3.6.1 Matplotlib

• Plotting with matplotlib

• Using matplotlib.pyplot

• Animated Plots

Plotting with matplotlib

To plot a Matplotlib figure in Excel you first create the figure in exactly the same way you would in any Python
script using matplotlib, and then use PyXLL’s plot function to show it in the Excel workbook.

Note: Using matplotlib with PyXLL requires matplotlib to be installed. This can be done using pip install
matplotlib, or conda install matplotlib if you are using Anaconda.

For example, the code below is an Excel worksheet function that generates a matplotlib chart and then displays it
in Excel.

from pyxll import xl_func, plot
import matplotlib
import matplotlib.pyplot as plt

(continues on next page)

3.6. Charts and Plotting 102

PyXLL User Guide, Release 5.8.0

(continued from previous page)

import numpy as np

@xl_func
def simple_plot():

Data for plotting
t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2 * np.pi * t)

Create the figure and plot the data
fig, ax = plt.subplots()
ax.plot(t, s)

ax.set(xlabel='time (s)', ylabel='voltage (mV)',
title='About as simple as it gets, folks')

ax.grid()

Display the figure in Excel
plot(fig)

Note: There is no need to select a backend using matplotlib.use. PyXLL will select the backend automatically.

When this function is called from Excel the matplotlib figure is drawn below the cell the function was called from.

The plotting code above was taken from the matplotlib examples. You can find many more examples on the mat-
plotlib website as well as documentation on how to use all of matplotlib’s features.

3.6. Charts and Plotting 103

PyXLL User Guide, Release 5.8.0

Using matplotlib.pyplot

Pyplot is part of matplotlib and provides a convenient layer for interactive work. If you are more familiar with
pyplot and want to use it with PyXLL then that is no problem!

Instead of calling pyplot.show() to show the current plot, use plot without passing a figure and it will show the
current plot in Excel. After plotting the current pyplot figure is closed.

from pyxll import xl_func, plot
import numpy as np
import matplotlib.pyplot as plt

@xl_func
def pyplot():

Draw a plot using pyplot
x = np.arange(0, 5, 0.1);
y = np.sin(x)
plt.plot(x, y)

Display it in Excel using pyxll.plot
plot()

As with the previous example when this function is called from Excel the plot is shown below the calling cell.

3.6. Charts and Plotting 104

PyXLL User Guide, Release 5.8.0

Animated Plots

Matplotlib can be used to create animated plots as well as static ones. These can also be used in Excel with PyXLL.

Note: Support for animated matplotlib plots is new in PyXLL 5.4.0.

Animated plots using matplotlib are created using the matplotlib.animation.Animation type. The animation
object can be passed to plot in the same way a Figure was used above. The animated plot will be rendered to an
animated GIF and embedded in the Excel workbook.

Warning: If you see an error saying that the image cannot be displayed then this will be because your version
of Excel is not capable of displaying animated GIFs and you will need to update to a newer version of Excel.

The following code shows how to construct a simple animated plot with matplotlib and display the results in Excel.
It can take a small amount of time to render the animation, depending on the number of frames and complexity of
the plot.

from pyxll import xl_func, plot

from matplotlib.animation import FuncAnimation
from matplotlib import pyplot as plt
import numpy as np

@xl_func
def plot_sine_wave(frequency=1, amplitude=1):

Create the matplotlib Figure object, axes and a line
fig = plt.figure(facecolor='white')
ax = plt.axes(xlim=(0, 4), ylim=(-2 * amplitude, 2 * amplitude))
line, = ax.plot([], [], lw=3)

The init function is called at the start of the animation
def init():

line.set_data([], [])
return line,

The animate function is called for each frame of the animation
def animate(i):

x = np.linspace(0, 4, 1000)
y = np.sin(frequency * 2 * np.pi * (x - 0.01 * i)) * amplitude
line.set_data(x, y)
return line,

Construct the Animation object
anim = FuncAnimation(fig,

animate,
init_func=init,
frames=100,
interval=20,
blit=True)

Call pyxll.plot with the Animation object to render the animation
and display it in Excel.
plot(anim)

For more information about animated plots in matplotlib please refer to the matplotlib user guide.

3.6. Charts and Plotting 105

PyXLL User Guide, Release 5.8.0

3.6.2 Plotting with Pandas

Pandas provides some convenient plotting capabilities based on the matplotlib package. Using pandas to plot
DataFrames can be more convenient than using matplotlib directly, and because the result is a matplotlib figure it
can be used with PyXLL’s plot function.

The DataFrame.plot plots using matplotlib.pyplot and plots to the current pyplot figure. This can then be
displayed in Excel using plot. When passed no arguments, plot plots the current matplotlib.pyplot figure
and closes it.

from pyxll import xl_func, plot
import pandas as pd

@xl_func
def pandas_plot():

Create a DataFrame to plot
df = pd.DataFrame({

'name':['john','mary','peter','jeff','bill','lisa','jose'],
'age':[23,78,22,19,45,33,20],
'gender':['M','F','M','M','M','F','M'],
'state':['california','dc','california','dc','california','texas','texas'],
'num_children':[2,0,0,3,2,1,4],
'num_pets':[5,1,0,5,2,2,3]

})

A simple bar chart, plotted using matplotlib.pyplot
df.plot(kind='bar',x='name',y='age')

Show the current matplotlib.pyplot figure using pyxll.plot
plot()

As with the previous matplotlib examples, when this function is called from Excel the plot is shown below the
calling cell.

The Pandas plot function optionally takes a matplotlib.Axes object. This can be used to plot to a specific Axes
object instead of to the current matplotlib.pyplot figure. For example, for doing subplots or if you need more
control over the matplotlib.Figure being used.

from pyxll import xl_func, plot
import matplotlib.pyplot as plt
import pandas as pd

@xl_func
def pandas_plot():

Create a DataFrame to plot
df = pd.DataFrame({

'name':['john','mary','peter','jeff','bill','lisa','jose'],
'age':[23,78,22,19,45,33,20],
'gender':['M','F','M','M','M','F','M'],
'state':['california','dc','california','dc','california','texas','texas

→˓'],
'num_children':[2,0,0,3,2,1,4],
'num_pets':[5,1,0,5,2,2,3]

})

Create the matplotlib Figure and Axes objects
fig, ax = plt.subplots()

Plot a bar chart to the Axes we just created
(continues on next page)

3.6. Charts and Plotting 106

PyXLL User Guide, Release 5.8.0

(continued from previous page)

df.plot(kind='bar',x='name',y='age', ax=ax)

Show the matplotlib Figure created above
plot(fig)

3.6.3 Plotly

To plot a Plotly figure in Excel you first create the figure in exactly the same way you would in any Python script
using plotly, and then use PyXLL’s plot function to show it in the Excel workbook.

When the figure is exported to Excel it first has to be converted to an image. This is done by PyXLL using plotly’s
write_image method. This requires an additional package kaleido to be installed.

To install kaleido use pip install -U kaleido, or conda install -c plotly python-kaleido if you are
using Anaconda.

PyXLL also supports using the legacy orca package, but from plotly 4.9 onwards it is recommended that you use
kaleido.

Note: If you have any problems with exporting plots as SVG images you can tell PyXLL to use the PNG format
instead by passing allow_svg=False to plot.

The code below shows an Excel worksheet function that generates a plotly figure displayed it in Excel.

from pyxll import xl_func, plot
import plotly.express as px

(continues on next page)

3.6. Charts and Plotting 107

PyXLL User Guide, Release 5.8.0

(continued from previous page)

@xl_func
def plotly_plot():

Get some sample data from plotly.express
df = px.data.gapminder()

Create a scatter plot figure
fig = px.scatter(df.query("year==2007"),

x="gdpPercap", y="lifeExp",
size="pop", color="continent",
log_x=True, size_max=60)

Show the figure in Excel using pyxll.plot
plot(fig)

When this function is run in Excel the plot is shown just below the calling cell. The first time you export an image
from plotly it can take a few seconds.

Warning: When exporting a figure to an image plotly launches a kaleido or orca subprocess to do the export.

If you have anti-virus software installed it may warn you about this subprocess being launched.

Note: The plot that you see in Excel is exported as an image so any interactive elements will not be available.

To make a semi-interactive plot you can add arguments to your function to control how the plot is done and when

3.6. Charts and Plotting 108

PyXLL User Guide, Release 5.8.0

those arguments are changed the plot will be redrawn.

3.6.4 Seaborn

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing
attractive and informative statistical graphics.

As Seaborn builds on matplotlib it works perfectly with PyXLL’s plot function.

All Seaborn plot functions use matplotlib.pyplot to plot to the current pyplot figure. This can then be dis-
played in Excel using plot. When passed no arguments, plot plots the current matplotlib.pyplot figure and
closes it.

from pyxll import plot, xl_func
import seaborn as sns

@xl_func
def sns_plot():

Load a dataset to plot
penguins = sns.load_dataset("penguins")

Plot a histogram, plotted to the current matplotlib.pyplot figure
sns.histplot(data=penguins, x="flipper_length_mm", hue="species", multiple="stack

→˓")

Show the current matplotlib.pyplot figure using pyxll.plot
plot()

As with the previous matplotlib examples, when this function is called from Excel the plot is shown below the
calling cell.

The Seaborn plotting functions also optionally take matplotlib.Axes objects. This can be used to plot to a
specific Axes object instead of to the current matplotlib.pyplot figure. For example, for doing subplots or if
you need more control over the matplotlib.Figure being used.

from pyxll import plot, xl_func
import matplotlib.pyplot as plt
import seaborn as sns

(continues on next page)

3.6. Charts and Plotting 109

PyXLL User Guide, Release 5.8.0

(continued from previous page)

@xl_func
def sns_plot():

Load a dataset to plot
penguins = sns.load_dataset("penguins")

Create the matplotlib Figure and Axes objects
fig, ax = plt.subplots()

Plot a histogram to the Axes we just created
sns.histplot(data=penguins, x="flipper_length_mm", hue="species", multiple="stack

→˓", ax=ax)

Show the matplotlib Figure created above
plot(fig)

3.6.5 Bokeh

To plot a bokeh figure in Excel you first create the figure in exactly the same way you would in any Python script
using bokeh, and then use PyXLL’s plot function to show it in the Excel workbook.

When the figure is exported to Excel it first has to be converted to an image. This is done using Selenium and so
that must be installed before Bokeh can be used with PyXLL.

The easiest way to install Selenium is to use Anaconda and install it using either of the following commands:

conda install selenium geckodriver firefox -c conda-forge

or

conda install selenium python-chromedriver-binary -c conda-forge

If you are not using Anaconda you can use pip install selenium but you will also need to install a suitable
web browser backend. See https://pypi.org/project/selenium/ for additional details about how to install Selenium.

Note: If you have any problems with exporting plots as SVG images you can tell PyXLL to use the PNG format
instead by passing allow_svg=False to plot.

The code below shows an Excel worksheet function that generates a bokeh figure and displays it in Excel.

Download the bokeh sample data first
import bokeh
bokeh.sampledata.download()

from math import pi
import pandas as pd
from bokeh.plotting import figure, output_file, show
from bokeh.sampledata.stocks import MSFT

@xl_func
def bokeh_plot():

Get some sample data to plot
df = pd.DataFrame(MSFT)[:50]
df["date"] = pd.to_datetime(df["date"])

(continues on next page)

3.6. Charts and Plotting 110

https://pypi.org/project/selenium/

PyXLL User Guide, Release 5.8.0

(continued from previous page)

Select dates based on open <> close
inc = df.close > df.open
dec = df.open > df.close
w = 12*60*60*1000 # half day in ms

Set up the figure
p = figure(x_axis_type="datetime", plot_width=1000, title="MSFT Candlestick")
p.xaxis.major_label_orientation = pi/4
p.grid.grid_line_alpha = 0.3

Plot lines for high/low and vbars for open/close
p.segment(df.date, df.high, df.date, df.low, color="black")
p.vbar(df.date[inc], w, df.open[inc], df.close[inc], fill_color="#D5E1DD", line_

→˓color="black")
p.vbar(df.date[dec], w, df.open[dec], df.close[dec], fill_color="#F2583E", line_

→˓color="black")

Show the plot in Excel using pyxll.plot
plot(p)

When this function is run in Excel the plot is shown just below the calling cell. The first time you export an image
from bokeh it can take a few seconds.

Warning: When exporting a figure to an image bokeh launches a Selenium subprocess to do the export.

3.6. Charts and Plotting 111

PyXLL User Guide, Release 5.8.0

If you have anti-virus software installed it may warn you about this subprocess being launched.

Note: The plot that you see in Excel is exported as an image so any interactive elements will not be available.

To make a semi-interactive plot you can add arguments to your function to control how the plot is done and when
those arguments are changed the plot will be redrawn.

3.6.6 Altair

To plot a altair figure in Excel you first create the figure in exactly the same way you would in any Python script
using altair, and then use PyXLL’s plot function to show it in the Excel workbook.

When the figure is exported to Excel it first has to be converted to an image. This is done using altair_saver which
also requires Selenium. Both of these must be installed before Altair can be used with PyXLL.

• altair_saver can be installed using pip install altair_saver or conda install -c conda-forge
altair_saver.

• The easiest way to install Selenium is to use Anaconda and install it using either of the following commands:

conda install selenium geckodriver firefox -c conda-forge

or

conda install selenium python-chromedriver-binary -c conda-forge

If you are not using Anaconda you can use pip install selenium but you will also need to install a
suitable web browser backend. See https://pypi.org/project/selenium/ for additional details about how to
install Selenium.

Note: If you have any problems with exporting plots as SVG images you can tell PyXLL to use the PNG format
instead by passing allow_svg=False to plot.

The code below shows an Excel worksheet function that generates a altair figure and displays it in Excel.

This example requies vega_datasets.
Install using 'pip install vega_datasets'
from vega_datasets import data
from pyxll import xl_func, plot
import altair as alt

@xl_func
def altair_plot():

Get the sample data set
source = data.cars()

Create the chart
chart = alt.Chart(source).mark_circle(size=60).encode(

x='Horsepower',
y='Miles_per_Gallon',
color='Origin'

)

Show it in Excel using pyxll.plot
plot(chart)

3.6. Charts and Plotting 112

https://pypi.org/project/selenium/

PyXLL User Guide, Release 5.8.0

When this function is run in Excel the plot is shown just below the calling cell. The first time you export an image
from altair it can take a few seconds.

Warning: When exporting a chart to an image altair launches a Selenium subprocess to do the export.

If you have anti-virus software installed it may warn you about this subprocess being launched.

Note: The plot that you see in Excel is exported as an image so any interactive elements will not be available.

To make a semi-interactive plot you can add arguments to your function to control how the plot is done and when
those arguments are changed the plot will be redrawn.

3.6.7 Other Plotting Packages

PyXLL provides support for matplotlib (including pyplot and pandas), plotly, bokeh and altair.

If you want to use another Python plotting package that’s not already supported then you can. To do so you need
to provide you own implementation of PyXLL’s PlotBridgeBase class.

The Plot Bridge is what PyXLL uses to export the chart or figure to an image, and so long as the plotting library
you want to use can export to SVG or PNG format you can write a plot bridge class to use it in PyXLL.

See the API reference for PlotBridgeBase for details of the methods you need to implement.

Once you have implemented your Plot Bridge you pass it to plot as the bridge_cls keyword argument. Whatever
object you pass as the figure to plot will be used to construct your Plot Bridge object, which will be used to export

3.6. Charts and Plotting 113

PyXLL User Guide, Release 5.8.0

the figure to an image. PyXLL will take care of the rest of inserting or updating that image in Excel.

Using Python’s plotting packages is preferable to using Excel’s own charts in some situations.

• You can plot directly from Python and so this can reduce the need to return a lot of data to Excel and make
your sheets smaller and simpler.

• Using the Python plotting libraries gives you more control over how your charts appear and gives you access
to chart types that are not available using Excel’s own chart types.

Fig. 1: Matplotlib charts in Excel

To show a plot or chart in Excel you use whichever Python plotting library you prefer to generate the chart and then
use PyXLL’s plot function to render it to Excel. See the individual guides linked above for specific instructions
for each.

Regardless of which plotting library you use the plot itself will be inserted into Excel as an image. This means that
it will not be interactive in the way that one hosted on a website or in a Jupyter notebook might be.

You can plot directly from an Excel worksheet function decorated with xl_func, and so you can provide your own
inputs to your plotting function. These can be used to let the user of your function have some control over how the
chart is plotted to make it interactive. Each time they change an input the plot will be re-drawn.

Note: Depending on the version of Excel you are using and the plotting library, the chart may be exported as an
SVG image when plotting to Excel.

Some plotting libraries can occasionally show problems when plotting to SVG. If you see any visual errors (for
example, borders being too thick or the background color showing through) you can set allow_svg=False when
calling plot. This will cause it to export the image in a bitmap format instead.

3.6. Charts and Plotting 114

PyXLL User Guide, Release 5.8.0

3.6.8 Plotting from Worksheet Functions

When you use plot from an Excel worksheet function using xl_func the image inserted into the Excel workbook
will be placed just below the cell the function is being called from.

Additionally, subsequent calls to the same function will replace the image rather than creating a new one each time
the function is called. This is done by giving the image a unique name for the calling cell. If you perform multiple
plots from the same function you will need to pass a name for each to the plot function.

3.6.9 Plotting from Menus, Macros and Elsewhere

The plot function when called from anywhere other than a worksheet function will always add a new image to
the Excel workbook. By default, the location of the image will be just underneath the currently selected cell.

If you want to replace an existing image rather than add a new one, use the name argument to plot and when plotting
an image with the same name multiple times the existing image in Excel will be replaced instead of creating a new
one.

3.6.10 Resizing and Replotting

New in PyXLL 5.7

When resizing a plot in Excel, when you change the selection to something else (e.g. click off the plot and into
another cell) the figure will be redrawn to the new size of the image displayed in Excel.

This can be disabled by passing allow_resize=False to the plot function, or by setting the following in your
pyxll.cfg file

[PYXLL]
plot_auto_resize = 0

3.7 Custom User Interfaces

PyXLL enables you to integrate sophisticated user interfaces directly into Excel.

Python UI controls can be embedded into Excel Custom Task Panes so they seamlessly fit in with the rest of the
Excel user interface.

PyXLL has support for the following Python UI tookits.

3.7.1 PySide and PyQt

PySide and PyQt are both Python packages wrapping the popular Qt UI toolkit. They are quite similar but have
different licenses and so which one you choose will be down to your own preference. Both work equally well with
PyXLL.

This document is not a guide to use PySide or PyQt. It is only intended to instruct you on how to use PySide and
PyQt with the Custom Task Pane feature of PyXLL. You should refer to the relevant package documentation for
details of how to use each package.

Both PySide and PyQt can be installed using pip or conda, for example:

> pip install pyside2
or
> pip install pyqt5
or
> conda install pyside2

(continues on next page)

3.7. Custom User Interfaces 115

PyXLL User Guide, Release 5.8.0

(continued from previous page)

or
> conda install "pyqt>=5"

Typically you will only want to install one or the other, and you should install it using pip or conda and not both.

You can find more information about PySide and PyQt on the websites, https://wiki.qt.io/Qt_for_Python and https:
//www.riverbankcomputing.com/software/pyqt/ respectively.

Note: Qt6 support was added in PyXLL 5.1, for both PySide6 and PyQt6.

Any of PySide2, PySide6, PyQt5 and PyQt6 can be used with PyXLL.

Creating a Qt Widget

One of the main classes in Qt5 is the QWidget class. To create your own user interface it is this QWidget class that
you will use, and it’s what PyXLL will embed into Excel as a Custom Task Pane.

The following code demonstrates how to create simple Qt widget. If you run this code as a Python script then you
will see the widget being shown.

from PySide2 import QtWidgets
or from PyQt5 import QtWidgets
import sys

class ExampleWidget(QtWidgets.QWidget):

def __init__(self):
super().__init__()
self.initUI()

def initUI(self):
"""Initialize the layout and child controls for this widget."""
Give the widget a title
self.setWindowTitle("Example Qt Widget")

Create a "Layout" object to help layout the child controls.
A QVBoxLayout lays out controls vertically.
vbox = QtWidgets.QVBoxLayout(self)

Create a QLineEdit control and add it to the layout
self.line_edit = QtWidgets.QLineEdit(self)
vbox.addWidget(self.line_edit)

Create a QLabel control and add it to the layout
self.label = QtWidgets.QLabel(self)
vbox.addWidget(self.label)

Connect the 'textChanged' event to our 'onChanged' method
self.line_edit.textChanged.connect(self.onChanged)

Set the layout for this widget
self.setLayout(vbox)

def onChanged(self, text):
"""Called when the QLineEdit's text is changed"""
Set the text from the QLineEdit control onto the label control

(continues on next page)

3.7. Custom User Interfaces 116

https://wiki.qt.io/Qt_for_Python
https://www.riverbankcomputing.com/software/pyqt/
https://www.riverbankcomputing.com/software/pyqt/

PyXLL User Guide, Release 5.8.0

(continued from previous page)

self.label.setText(text)
self.label.adjustSize()

if __name__ == "__main__":
Create the Qt Application
app = QtWidgets.QApplication(sys.argv)

Create our example widget and show it
widget = ExampleWidget()
widget.show()

Run the Qt app
sys.exit(app.exec_())

When you run this code you will see our example widget being display, and as you enter text into the line edit
control the label below will be updated.

Next we’ll see how we can use this widget in Excel.

Creating a Custom Task Pane from a Qt Widget

To show a QWidget in Excel using PyXLL we use the create_ctp function.

As above, before we can create the widget we have to make sure the QApplication has been initialized. Unlike the
above script, our function may be called many times and so we don’t want to create a new application each time
and so we check to see if one already exists.

The QApplication object must still exist when we call create_ctp. If it has gone out of scope and been released
then it will cause problems later so always make sure to keep a reference to it.

We can create the Custom Task Pane from many different places, but usually it will be from a ribbon function or a
menu function.

The following code shows how we would create a custom task pane from an Excel menu function, using the
ExampleWidget control from the example above.

from pyxll import xl_menu, create_ctp, CTPDockPositionFloating
from PySide2 import QtWidgets
or from PyQt5 import QtWidgets

(continues on next page)

3.7. Custom User Interfaces 117

PyXLL User Guide, Release 5.8.0

(continued from previous page)

@xl_menu("Example Qt CTP")
def example_qt_ctp():

Before we can create a Qt widget the Qt App must have been initialized.
Make sure we keep a reference to this until create_ctp is called.
app = QtWidgets.QApplication.instance()
if app is None:

app = QtWidgets.QApplication([])

Create our example Qt widget from the code above
widget = ExampleWidget()

Use PyXLL's 'create_ctp' function to create the custom task pane.
The width, height and position arguments are optional, but for this
example we'll create the CTP as a floating widget rather than the
default of having it docked to the right.
create_ctp(widget,

width=400,
height=400,
position=CTPDockPositionFloating)

When we add this code to PyXLL and reload the new menu function “Example Qt CTP” will be available, and
when that menu function is run the ExampleWidget is opened as a Custom Task Pane in Excel.

Unlike a modal dialog, a Custom Task Pane does not block Excel from functioning. It can be moved and resized,
and even docked into the current Excel window in exactly the same way as the native Excel tools.

See the API reference for create_ctp for more details.

3.7. Custom User Interfaces 118

PyXLL User Guide, Release 5.8.0

3.7.2 wxPython

wxPython is a Python packages that wraps the UI toolkit wxWindows.

This document is not a guide to use wxPython or wxWindows. It is only intended to instruct you on how to use
wxPython with the Custom Task Pane feature of PyXLL. You should refer to the relevant package documentation
for details of how to use wxPython and wxWindows.

Both wxWindows can be installed using pip or conda, for example:

> pip install wxpython
or
> conda install wxpython

You should install it using pip or conda and not both.

You can find more information about wxPython on the website https://www.wxpython.org/.

Creating a wx Frame

Two of the main classes we’ll use in wxPython are the wx.Frame and wx.Panel classes.

A wx.Frame is the main window type, and it’s this that you’ll create to contain your user interface that will be
embedded into Excel as a Custom Task Panel. Frames typically host a single wx.Panel which is where all the
controls that make up your user interface will be placed.

The following code demonstrates how to create simple wx.Frame and corresponding wx.Panel. If you run this code
as a Python script then you will see the frame being shown.

import wx

class ExamplePanel(wx.Panel):

def __init__(self, parent):
super().__init__(parent=parent)

Create a sizer that will lay everything out in the panel.
A BoxSizer can arrange controls horizontally or vertically.
sizer = wx.BoxSizer(orient=wx.VERTICAL)

Create a TextCtrl control and add it to the layout
self.text_ctrl = wx.TextCtrl(self)
sizer.Add(self.text_ctrl)

Create a StaticText control and add it to the layout
self.static_text = wx.StaticText(self)
sizer.Add(self.static_text)

Connect the 'EVT_TEXT' event to our 'onText' method
self.text_ctrl.Bind(wx.EVT_TEXT, self.onText)

Set the sizer for this panel and layout the controls
self.SetSizer(sizer)
self.Layout()

def onText(self, event):
"""Called when the TextCtrl's text is changed"""
Set the text from the event onto the static_text control
text = event.GetString()

(continues on next page)

3.7. Custom User Interfaces 119

https://www.wxpython.org/

PyXLL User Guide, Release 5.8.0

(continued from previous page)

self.static_text.SetLabel(text)

class ExampleFrame(wx.Frame):

def __init__(self):
super().__init__(parent=None)

Give this frame a title
self.SetTitle("Wx Example")

Create the panel that contains the controls for this frame
self.panel = ExamplePanel(parent=self)

if __name__ == "__main__":
Create the wx Application object
app = wx.App()

Construct our example Frame and show it
frame = ExampleFrame()
frame.Show()

Run the application's main event loop
app.MainLoop()

When you run this code you will see our example frame being display, and as you enter text into the text control
the static text below will be updated.

Next we’ll see how we can use this frame in Excel.

3.7. Custom User Interfaces 120

PyXLL User Guide, Release 5.8.0

Creating a Custom Task Pane from a wx.Frame

To show a wx.Frame in Excel using PyXLL we use the create_ctp function.

As above, before we can create the frame we have to make sure the wx.App application object has been initialized.
Unlike the above script, our function may be called many times and so we don’t want to create a new application
each time and so we check to see if one already exists.

The wx.App object must still exist when we call create_ctp. If it has gone out of scope and been released then
it will cause problems later so always make sure to keep a reference to it.

We can create the Custom Task Pane from many different places, but usually it will be from a ribbon function or a
menu function.

The following code shows how we would create a custom task pane from an Excel menu function, using the
ExampleFrame control from the example above.

from pyxll import xl_menu, create_ctp, CTPDockPositionFloating
import wx

@xl_menu("Example wx CTP")
def example_wx_ctp():

Before we can create a wx.Frame the wx.App must have been initialized.
Make sure we keep a reference to this until create_ctp is called.
app = wx.App.Get()
if app is None:

app = wx.App()

Create our example frame from the code above
frame = ExampleFrame()

Use PyXLL's 'create_ctp' function to create the custom task pane.
The width, height and position arguments are optional, but for this
example we'll create the CTP as a floating window rather than the
default of having it docked to the right.
create_ctp(frame,

width=400,
height=400,
position=CTPDockPositionFloating)

When we add this code to PyXLL and reload the new menu function “Example wx CTP” will be available, and
when that menu function is run the ExampleFrame is opened as a Custom Task Pane in Excel.

Unlike a modal dialog, a Custom Task Pane does not block Excel from functioning. It can be moved and resized,
and even docked into the current Excel window in exactly the same way as the native Excel tools.

See the API reference for create_ctp for more details.

3.7.3 Tkinter

tkinter is a Python packages that wraps the Tk GUI toolkit.

tkinter is included with Python and so is available to use without needing to install any additional packages.

This document is not a guide to use tkinter. It is only intended to instruct you on how to use Tkinter with the Custom
Task Pane feature of PyXLL. You should refer to the tkinter documentation for details of how to use tkinter.

You can find more information about tkinter in the Python docs website https://docs.python.org/3/library/tkinter.
html.

3.7. Custom User Interfaces 121

https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html

PyXLL User Guide, Release 5.8.0

Creating a tk Frame

One of the main classes in tkinter is the Frame class. To create your own user interface it is this Frame class that
you will use, and it’s what PyXLL will embed into Excel as a Custom Task Pane.

The following code demonstrates how to create simple tkinter.Frame. If you run this code as a Python script
then you will see the frame being shown.

import tkinter as tk

class ExampleFrame(tk.Frame):

def __init__(self, master):
super().__init__(master)
self.initUI()

def initUI(self):
allow the widget to take the full space of the root window
self.pack(fill=tk.BOTH, expand=True)

Create a tk.Entry control and place it using the 'grid' method
self.entry_value = tk.StringVar()
self.entry = tk.Entry(self, textvar=self.entry_value)
self.entry.grid(column=0, row=0, padx=10, pady=10, sticky="ew")

Create a tk.Label control and place it using the 'grid' method
self.label_value = tk.StringVar()
self.label = tk.Label(self, textvar=self.label_value)
self.label.grid(column=0, row=1, padx=10, pady=10, sticky="w")

(continues on next page)

3.7. Custom User Interfaces 122

PyXLL User Guide, Release 5.8.0

(continued from previous page)

Bind write events on the 'entry_value' to our 'onWrite' method
self.entry_value.trace("w", self.onWrite)

Allow the first column in the grid to stretch horizontally
self.columnconfigure(0, weight=1)

def onWrite(self, *args):
"""Called when the tk.Entry's text is changed"""
Update the label's value to be the same as the entry value
self.label_value.set(self.entry_value.get())

if __name__ == "__main__":
Create the root Tk object
root = tk.Tk()

Give the root window a title
root.title("Tk Example")

Construct our frame object
ExampleFrame(master=root)

Run the tk main loop
root.mainloop()

When you run this code you will see our example frame being display, and as you enter text into the text entry
control the static text label below will be updated.

Next we’ll see how we can use this frame in Excel.

3.7. Custom User Interfaces 123

PyXLL User Guide, Release 5.8.0

Creating a Custom Task Pane from a tkinter.Frame

To show a tkinter.Frame in Excel using PyXLL we use the create_ctp function.

As above, before we can create the frame we have to create a root object to add it to. Unlike the above script,
our function may be called many times and so we don’t want to use the tk.Tk root object. Instead we use a
tk.Toplevel object.

We can create the Custom Task Pane from many different places, but usually it will be from a ribbon function or a
menu function.

The following code shows how we would create a custom task pane from an Excel menu function, using the
ExampleFrame control from the example above.

from pyxll import xl_menu, create_ctp, CTPDockPositionFloating
import tkinter as tk

@xl_menu("Example Tk CTP")
def example_tk_ctp():

Create the top level Tk window and give it a title
window = tk.Toplevel()
window.title("Tk Example")

Create our example frame from the code above and add
it to the top level window.
frame = ExampleFrame(master=window)

Use PyXLL's 'create_ctp' function to create the custom task pane.
The width, height and position arguments are optional, but for this
example we'll create the CTP as a floating window rather than the
default of having it docked to the right.
create_ctp(window,

width=400,
height=400,
position=CTPDockPositionFloating)

When we add this code to PyXLL and reload the new menu function “Example Tk CTP” will be available, and
when that menu function is run the ExampleFrame is opened as a Custom Task Pane in Excel.

Unlike a modal dialog, a Custom Task Pane does not block Excel from functioning. It can be moved and resized,
and even docked into the current Excel window in exactly the same way as the native Excel tools.

See the API reference for create_ctp for more details.

3.7.4 Other UI Toolkits

PyXLL provides support for PySide2 and PyQt5, wxPython, and Tkinter.

If you want to use another Python UI toolkit that’s not already supported then you still may be able to. To do so
you need to provide you own implementation of PyXLL’s CTPBridgeBase class.

The CTP Bridge is what PyXLL uses to manage getting certain properties of the Python UI toolkit’s window or
frame objects in a consistent way and passing events from Excel to Python.

See the API reference for CTPBridgeBase for details of the methods you need to implement.

Once you have implemented your CTP Bridge you pass it to create_ctp as the bridge_cls keyword argument.
Whatever object you pass as the widget to create_ctp will be used to construct your CTP Bridge object. PyXLL
will take care of the rest of embedding your widget into Excel.

3.7. Custom User Interfaces 124

PyXLL User Guide, Release 5.8.0

Warning: Writing a CTP Bridge requires detailed knowledge of the UI toolkit you are working with.

This is an expert topic and PyXLL can only offer support limited to the functionality of PyXLL and not third
party packages.

Custom Task Panes (CTPs) are created using a control or widget from any of the supported Python UI toolkits by
calling the PyXLL function create_ctp. All CTPs can be docked into the main Excel window and the initial
position and size can be set when calling create_ctp.

For specific details of creating a custom task pane with any of the supported Python UI toolkits see the links above.
Examples are provided in the examples/custom_task_panes folder in the PyXLL download.

3.8 Using Pandas in Excel

• Pandas Types Options

• Passing as Python objects instead of Excel arrays

• Using the Pandas type converters outside of a UDF

Pandas DataFrames and Series can be used as function arguments and return types for Excel worksheet functions
using the decorator xl_func.

When used as an argument, the range specified in Excel will be converted into a Pandas DataFrame or Series as
specified by the function signature.

When returning a DataFrame or Series, a range of data will be returned to Excel. PyXLL can automatically resize
the range of the array formula to match the returned data by setting auto_resize=True in xl_func.

The following code shows a function that returns a random dataframe, including the index:

3.8. Using Pandas in Excel 125

PyXLL User Guide, Release 5.8.0

Fig. 2: A Python user interface in Excel

from pyxll import xl_func
import pandas as pd
import numpy as np

@xl_func("int rows, int columns: dataframe<index=True>", auto_resize=True)
def random_dataframe(rows, columns):

data = np.random.rand(rows, columns)
column_names = [chr(ord('A') + x) for x in range(columns)]
return pd.DataFrame(data, columns=column_names)

A function can also take a DataFrame or Series as one its arguments. When passing a DataFrame or Series to a
function the whole data area must be selected in Excel and used as the argument to the function.

The following function takes a DataFrame including the column headers row, but not including the index column
and returns the sum of a single column.:

from pyxll import xl_func

@xl_func("dataframe<index=False, columns=True>, str: float")
def sum_column(df, col_name):

col = df[col_name]
return col.sum()

See also Pandas DataFrame Formatting and Plotting with Pandas.

3.8. Using Pandas in Excel 126

PyXLL User Guide, Release 5.8.0

3.8.1 Pandas Types Options

The following type parameters are available for the dataframe and series argument and return types:

Tip: For specifying multiple or complex type parameters it can be easier to use the xl_arg and xl_return
decorators.

See @xl_arg and @xl_return Decorators for more details about how to use xl_arg and xl_return to specify
type parameters.

• dataframe, when used as an argument type

dataframe<index=0, columns=1, dtype=None, dtypes=None, index_dtype=None,
multi_sparse=True>

index
Number of columns to use as the DataFrame’s index. Specifying more than one will result in a
DataFrame where the index is a MultiIndex.

columns
Number of rows to use as the DataFrame’s columns. Specifying more than one will result in a
DataFrame where the columns is a MultiIndex. If used in conjunction with index then any column
headers on the index columns will be used to name the index.

dtype
Datatype for the values in the dataframe. May not be set with dtypes.

dtypes
Dictionary of column name -> datatype for the values in the dataframe. May not be set with dtype.

The dictionary can be specified using standard Python dictionary syntax as part of a function signature
string. However, often it is more convenient to use the xl_arg or xl_return decorators. These allow
you to set type multiple complex parameters more easily, for example:

@xl_func
@xl_arg("df", "dataframe", dtypes={"A": "date"})
def your_function(df):

....

Not all column dtypes need to be specified. Any that are not specified will default to var.

index_dtype
Datatype for the values in the dataframe’s index.

multi_sparsePage 127, 1

Return sparse results for MultiIndexes. Can be set to True or False, or 'index' or 'columns' if it
should only apply to one or the other.

• dataframe, when used as a return type

dataframe<index=None, columns=True>

index
If True include the index when returning to Excel, if False don’t. If None, only include if the index is
named.

columns
If True include the column headers, if False don’t.

• series, when used as an argument type

series<index=1, transpose=None, dtype=None, index_dtype=None, multi_sparse=True>

1 The multi_sparse parameter is new in PyXLL 5.3.0.

3.8. Using Pandas in Excel 127

PyXLL User Guide, Release 5.8.0

index
Number of columns (or rows, depending on the orientation of the Series) to use as the Series index.

transpose
Set to True if the Series is arranged horizontally or False if vertically. By default the orientation will
be guessed from the structure of the data.

dtype
Datatype for the values in the Series.

index_dtype
Datatype for the values in the Series’ index.

multi_sparse1

Return sparse results for MultiIndexes.

• series, when used as a return type

series<index=True, transpose=False>

index
If True include the index when returning to Excel, if False don’t.

transpose
Set to True if the Series should be arranged horizontally, or False if vertically.

3.8.2 Passing as Python objects instead of Excel arrays

When passing large DataFrames between Python functions, it is not always necessary to return the full DataFrame
to Excel and it can be expensive reconstructing the DataFrame from the Excel range each time. In those cases
you can use the object return type to return a handle to the Python object. Functions taking the dataframe and
series types can accept object handles.

The following returns a random DataFrame as a Python object, so will appear in Excel as a single cell with a handle
to that object:

from pyxll import xl_func
import pandas as pd
import numpy as np

@xl_func("int rows, int columns: object")
def random_dataframe(rows, columns):

data = np.random.rand(rows, columns)
column_names = [chr(ord('A') + x) for x in range(columns)]
return pd.DataFrame(data, columns=column_names)

The result of a function like this can be passed to another function that expects a DataFrame:

@xl_func("dataframe, int: dataframe<index=True>", auto_resize=True)
def dataframe_head(df, num_rows):

return df.head(num_rows)

This allows for large datasets to be used in Excel efficiently, especially where the data set would be cumbersome
to deal with in Excel when unpacked.

3.8. Using Pandas in Excel 128

PyXLL User Guide, Release 5.8.0

3.8.3 Using the Pandas type converters outside of a UDF

Sometimes it’s useful to be able to convert a range of data into a DataFrame, or a DataFrame into a range of data
for Excel, in a context other than function decorated with xl_func. Or, you might have a function that takes the
var type, which could be a DataFrame depending on other arguments.

In these cases the function get_type_converter can be used. For example:

from pyxll import get_type_converter

to_dataframe = get_type_converter("var", "dataframe<index=True>")
df = to_dataframe(data)

Or the other way:

to_array = get_type_converter("dataframe", "var")
data = to_array(df)

XLCell be used to get and set values from Excel from a menu or macro function. This can also use the pandas
type converters by specifying the type to the XLCell.options method.

For example:

from pyxll import XLCell, xl_macro

@xl_macro
def write_dataframe():

df = ... # construct DataFrame
cell = XLCell.from_range(...) # get an XLCell instance from a Range object

Set the DataFrame value in Excel.
This automatically converts the DataFrame to an array type for writing to Excel.
cell.options(type="dataframe", auto_resize=True).value = df

All the same parameters for the dataframe and series types can be used to control how the conversion is per-
formed.

See Writing Python Values to Excel for more details of how to write Excel macros in Python that write values
(including DataFrames to the Excel worksheet).

3.9 Customizing the Ribbon

• Introduction

• Creating a Custom Tab

• Action Functions

• Using Images

• Modifying the Ribbon

• Merging Ribbon Files

3.9. Customizing the Ribbon 129

PyXLL User Guide, Release 5.8.0

3.9.1 Introduction

The Excel Ribbon interface can be customized using PyXLL. This enables you to add features to Excel in Python
that are properly integrated with Excel for an intuitive user experience.

The ribbon customization is defined using an XML file, referenced in the config with the ribbon setting. This can
be set to a filename relative to the config file, or as as absolute path. If multiple files are listed they will all be read
and merged.

The ribbon XML file uses the standard Microsoft CustomUI schema. This is the same schema you would use if you
were customizing the ribbon using COM, VBA or VSTO and there are various online resources from Microsoft
that document it1.

Actions referred to in the ribbon XML file are resolved to Python functions. The full path to the function must be
included (e.g. “module.function”) and the module must be on the python path so it can be imported. Often it’s
useful to include the modules used by the ribbon in the modules list in the config so that when PyXLL is reloaded
those modules are also reloaded, but that is not strictly necessary.

3.9.2 Creating a Custom Tab

• Create a new ribbon xml file. The one below contains a single tab Custom Tab and a single button.

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon>

<tabs>
<tab id="CustomTab" label="Custom Tab">

<group id="ContentGroup" label="Content">
<button id="textButton" label="Text Button"/>

</group>
</tab>

</tabs>
</ribbon>

</customUI>

• Set ribbon in the config file to the filename of the newly created ribbon XML file.

[PYXLL]
ribbon = <full path to xml file>

• Start Excel (or reload PyXLL if Excel is already started).
1 Microsoft Ribbon Resources

• Ribbon XML

• Walkthrough: Creating a Custom Tab by Using Ribbon XML

• XML Schema Reference

3.9. Customizing the Ribbon 130

https://docs.microsoft.com/en-gb/visualstudio/vsto/ribbon-xml
https://docs.microsoft.com/en-gb/visualstudio/vsto/walkthrough-creating-a-custom-tab-by-using-ribbon-xml
https://www.microsoft.com/en-us/download/details.aspx?id=22609

PyXLL User Guide, Release 5.8.0

The tab appears in the ribbon with a single text button as specified in the XML file. Clicking on the button doesn’t
do anything yet.

3.9.3 Action Functions

Anywhere a callback method is expected in the ribbon XML you can use the name of a Python function.

Many of the controls used in the ribbon have an onAction attribute. This should be set to the name of a Python
function that will handle the action.

• To add an action handler to the example above first modify the XML file to add the onAction attribute to the
text button

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon>

<tabs>
<tab id="CustomTab" label="Custom Tab">

<group id="ContentGroup" label="Content">
<button id="textButton" label="Text Button"

onAction="ribbon_functions.on_text_button"/>
</group>

</tab>
</tabs>

</ribbon>
</customUI>

• Create the ribbon_functions module with the filename ribbon_functions.py and add the on_text_button func-
tion2. Note that the module name isn’t important, only that it matches the one used in the xml file.

2 The name of the module and function is unimportant, it just has to match the onAction attribute in the XML and be on the pythonpath so
it can be imported.

3.9. Customizing the Ribbon 131

PyXLL User Guide, Release 5.8.0

from pyxll import xl_app

def on_text_button(control):
xl = xl_app()
xl.Selection.Value = "This text was added by the Ribbon."

• Add the module to the pyxll config3.

[PYXLL]
modules = ribbon_functions

• Reload PyXLL. The custom tab looks the same but now clicking on the text button calls the Python function.

3.9.4 Using Images

Some controls can use an image to give the ribbon whatever look you like. These controls have an image attribute
and a getImage attribute.

The image attribute is set to the filename of an image you want to load. The getImage attribute is a function that
will return a COM object that implements the IPicture interface.

PyXLL provides a function, load_image, that loads an image from disk and returns a COM Picture object. This
can be used instead of having to do any COM programming in Python to load images.

When images are referenced by filename using the image attribute Excel will load them using a basic image handler.
This basic image handler is rather limited and doesn’t handle PNG files with transparency, so it’s recommended to
use load_image instead. The image handler can be set as the loadImage attribute on the customUI element.

The following shows the example above with a new button added and the loadImage handler set.

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui"
loadImage="pyxll.load_image">

<ribbon>
<tabs>

<tab id="CustomTab" label="Custom Tab">
<group id="ContentGroup" label="Content">

<button id="textButton" label="Text Button"
onAction="ribbon_functions.on_text_button"/>

</group>
<group id="Tools" label="Tools">

<button id="Reload"
size="large"
label="Reload PyXLL"
onAction="pyxll.reload"
image="reload.png"/>

</group>
</tab>

</tabs>
</ribbon>

</customUI>

3 This isn’t strictly necessary but is helpful as it means the module will be reloaded when PyXLL is reloaded.

3.9. Customizing the Ribbon 132

PyXLL User Guide, Release 5.8.0

If using the load_image image loader package resources can also be used as well as filenames. To specify a
package resource use for the format module:resource.

3.9.5 Modifying the Ribbon

Sometimes its convenient to be able to update the ribbon after Excel has started, without having to change the
pyxll.cfg config file.

For example, if your addin is used by multiple users with different roles then one single ribbon may not be applicable
for each user. Or, you may want to allow the user to switch between different ribbons depending on what they’re
working on.

There are some Python functions you can use from your code to update the ribbon:

• get_ribbon_xml

• set_ribbon_xml

• set_ribbon_tab

• remove_ribbon_tab

These functions can be used to completely replace the current ribbon (set_ribbon_xml) or just to add, replace
or remove tabs (set_ribbon_tab, remove_ribbon_tab).

The ribbon can be updated anywhere from Python code running in PyXLL. Typically this would be when Excel
starts up using the xl_on_open and xl_on_reload event handlers, or from an action function from the current
ribbon.

3.9. Customizing the Ribbon 133

PyXLL User Guide, Release 5.8.0

3.9.6 Merging Ribbon Files

If multiple ribbon files are found, either because there are multiple listed using the ribbon setting in the pyxll.cfg
file or because additional ones have been found via some entry points they will be merged automatically.

When merging, any tabs with the same id will be merged into a single tab. Similarly, any groups within those tabs
with the same ids will also be merged. You should be careful to use unique ids for all elements so that they do not
conflict with any other ribbon elements that might get merged.

The order in which tabs, groups and other elements in groups are merged can be influenced by setting the attributes
insertBefore and insertAfter. These attributes are not part of the ribbon schema but PyXLL will use them
when merging the ribbon files. They can be set on tab and group elements, or any child element of a group
element. One or the other may be set, but not both. Use these to have elements inserted before or after other
elements by their ids.

3.10 Context Menu Functions

• Introduction

• Adding a Python Function to the Context Menu

• Creating Sub-Menus

• Dynamic Menus

• References

3.10.1 Introduction

Context menus are the menus that appear in Excel when your right-click on something, most usually a cell in the
current workbook.

These context menus have become a standard way for users to interact with their spreadsheets and are an efficient
way to get to often used functions.

With PyXLL you can add your own Python functions to the context menus.

The context menu customizations are defined using the same XML file used when customizing the Excel ribbon
(see Customizing the Ribbon). The XML file is referenced in the config with the ribbon setting. This can be set to
a filename relative to the config file, or as an absolute path.

The ribbon XML file uses the standard Microsoft CustomUI schema. This is the same schema you would use if you
were customizing the ribbon using COM, VBA or VSTO and there are various online resources from Microsoft
that document it1. For adding context menus, you must use the 2009 version of the schema or later.

Actions referred to in the ribbon XML file are resolved to Python functions. The full path to the function must be
included (e.g. “module.function”) and the module must be on the python path so it can be imported. Often it’s
useful to include the modules used by the ribbon in the modules list in the config so that when PyXLL is reloaded
those modules are also reloaded, but that is not strictly necessary.

1 XML Schema Reference

3.10. Context Menu Functions 134

https://www.microsoft.com/en-us/download/details.aspx?id=22609

PyXLL User Guide, Release 5.8.0

3.10.2 Adding a Python Function to the Context Menu

• Create a new ribbon xml file, or add the contextMenus section from below to your existing ribbon xml file.

Note that you must use the 2009 version of the schema in the customUI element, and the contextMenus
element must be placed after the ribbon element.

<?xml version="1.0" encoding="UTF-8"?>
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

<ribbon>
<!-- The ribbon and context menus can be specified in the same file -->

</ribbon>
<contextMenus>

<contextMenu idMso="ContextMenuCell">
<button id="MyButton" label="Toggle Case Upper/Lower/Proper"

insertBeforeMso="Cut"
onAction="context_menus.toggle_case"
imageMso="HappyFace"/>

</contextMenu>
</contextMenus>

</customUI>

In the xml above, insertBeforeMso is used to insert the menu item before the existing “Cut” menu item. This
may be removed if you want the item placed at the end of the menu. Also, imageMso may be replaced with image
and set to the path of an image file rather than using one of Excel’s built in bitmaps (see load_image).

• If you’ve not already done so, set ribbon in the config file to the filename of the ribbon XML file.

[PYXLL]
ribbon = <full path to xml file>

• Create the context_menus module with the filename context_menus.py and add the toggle_case function.
Note that the module name isn’t important, only that it matches the one referenced in the onAction handler
in the xml file above.

from pyxll import xl_app

def toggle_case(control):
"""Toggle the case of the currently selected cells"""
get the Excel Application object
xl = xl_app()

iterate over the currently selected cells
for cell in xl.Selection:

get the cell value
value = cell.Value

skip any cells that don't contain text
if not isinstance(value, str):

continue

toggle between upper, lower and proper case
if value.isupper():

value = value.lower()
elif value.islower():

value = value.title()
else:

value = value.upper()

(continues on next page)

3.10. Context Menu Functions 135

PyXLL User Guide, Release 5.8.0

(continued from previous page)

set the modified value on the cell
cell.Value = value

• Add the module to the pyxll config2.

[PYXLL]
modules = context_menus

• Start Excel (or reload PyXLL if Excel is already started).

If everything has worked, you will now see the “Toggle Case” item in the context menu when you right click
on a cell.

3.10.3 Creating Sub-Menus

Sub-menus can be added to the context menu using the menu tag.

The following adds a sub-menu after the “Toggle Case” button added above.

<?xml version="1.0" encoding="UTF-8"?>
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

<ribbon>
<!-- The ribbon and context menus can be specified in the same file -->

</ribbon>
<contextMenus>

<contextMenu idMso="ContextMenuCell">
<button id="MyButton" label="Toggle Case Upper/Lower/Proper"

insertBeforeMso="Cut"
onAction="context_menus.toggle_case"
imageMso="HappyFace"/>

<menu id="MySubMenu" label="Case Menu" insertBeforeMso="Cut" >
<button id="Menu1Button1" label="Upper Case"

imageMso="U"
onAction="context_menus.toupper"/>

<button id="Menu1Button2" label="Lower Case"
imageMso="L"
onAction="context_menus.tolower"/>

<button id="Menu1Button3" label="Proper Case"
imageMso="P"
onAction="context_menus.toproper"/>

</menu>
</contextMenu>

</contextMenus>
</customUI>

The additional buttons use the following code, which you can copy to your context_menus.py module.:

def tolower(control):
"""Set the currently selected cells to lower case"""
get the Excel Application object
xl = xl_app()

iterate over the currently selected cells
for cell in xl.Selection:

get the cell value
(continues on next page)

2 This isn’t strictly necessary but is helpful as it means the module will be reloaded when PyXLL is reloaded.

3.10. Context Menu Functions 136

PyXLL User Guide, Release 5.8.0

(continued from previous page)

value = cell.Value

skip any cells that don't contain text
if not isinstance(value, str):

continue

cell.Value = value.lower()

def toupper(control):
"""Set the currently selected cells to upper case"""
get the Excel Application object
xl = xl_app()

iterate over the currently selected cells
for cell in xl.Selection:

get the cell value
value = cell.Value

skip any cells that don't contain text
if not isinstance(value, str):

continue

cell.Value = value.upper()

def toproper(control):
"""Set the currently selected cells to 'proper' case"""
get the Excel Application object
xl = xl_app()

iterate over the currently selected cells
for cell in xl.Selection:

get the cell value
value = cell.Value

skip any cells that don't contain text
if not isinstance(value, str):

continue

cell.Value = value.title()

3.10.4 Dynamic Menus

As well as statically declaring menus as above, you can also generate menus on the fly in your Python code.

A dynamic menu calls a Python function to get a xml fragment that tells Excel how to display the menu. This can
be useful when the items you want to appear in a menu might change.

The following shows how to declare a dynamic menu.

<?xml version="1.0" encoding="UTF-8"?>
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

<ribbon>
<!-- The ribbon and context menus can be specified in the same file -->

</ribbon>
(continues on next page)

3.10. Context Menu Functions 137

PyXLL User Guide, Release 5.8.0

(continued from previous page)

<contextMenus>
<contextMenu idMso="ContextMenuCell">

<dynamicMenu id="MyDynamicMenu"
label= "My Dynamic Menu"
imageMso="ChangeCase"
insertBeforeMso="Cut"
getContent="context_menus.dynamic_menu"/>

</contextMenu>
</contextMenus>

</customUI>

The getContent callback references the dynamic_menu function in the context_menus module.:

def dynamic_menu(control):
"""Return an xml fragment for the dynamic menu"""
xml = """

<menu xmlns="http://schemas.microsoft.com/office/2009/07/customui">
<button id="Menu2Button1" label="Upper Case"

imageMso="U"
onAction="context_menus.toupper"/>

<button id="Menu2Button2" label="Lower Case"
imageMso="L"
onAction="context_menus.tolower"/>

<button id="Menu2Button3" label="Proper Case"
imageMso="P"
onAction="context_menus.toproper"/>

</menu>
"""
return xml

3.10.5 References

• XML Schema Reference

• https://msdn.microsoft.com/en-us/library/dd926324(v=office.12).aspx

• http://interoperability.blob.core.windows.net/files/MS-CUSTOMUI2/{[}MS-CUSTOMUI2{]}-150904.
pdf

3.11 Macro Functions

• Introduction

• Exposing Functions as Macros

• Calling Macros From Excel

• Calling Excel from Python

• Reading Excel Values from Python

• Writing Python Values to Excel

• Keyboard Shortcuts

3.11. Macro Functions 138

https://www.microsoft.com/en-us/download/details.aspx?id=22609
https://msdn.microsoft.com/en-us/library/dd926324(v=office.12).aspx
http://interoperability.blob.core.windows.net/files/MS-CUSTOMUI2/{[}MS-CUSTOMUI2{]}-150904.pdf
http://interoperability.blob.core.windows.net/files/MS-CUSTOMUI2/{[}MS-CUSTOMUI2{]}-150904.pdf

PyXLL User Guide, Release 5.8.0

3.11.1 Introduction

You can write an Excel macro in python to do whatever you would previously have used VBA for. Macros work in
a very similar way to worksheet functions. To register a function as a macro you use the xl_macro decorator.

Macros are useful as they can be called when GUI elements (buttons, checkboxes etc.) fire events. They can also
be called from VBA.

Macro functions can call back into Excel using the Excel COM API (which is identical to the VBA Excel object
model). The function xl_app can be used to get the Excel.Application COM object (using either win32com or
comtypes), which is the COM object corresponding to the Application object in VBA.

See also Python as a VBA Replacement.

3.11.2 Exposing Functions as Macros

Python functions to be exposed as macros are decorated with the xl_macro decorator imported from the pyxll
module.

from pyxll import xl_macro, xl_app, xlcAlert

@xl_macro
def popup_messagebox():

xlcAlert("Hello")

@xl_macro
def set_current_cell(value):

xl = xl_app()
xl.Selection.Value = value

@xl_macro("string n: int")
def py_strlen(n):

return len(x)

3.11.3 Calling Macros From Excel

Macros defined with PyXLL can be called from Excel the same way as any other Excel macros.

The most usual way is to assign a macro to a control. To do that, first add the Forms toolbox by going to the Tools
Customize menu in Excel and check the Forms checkbox. This will present you with a panel of different controls
which you can add to your worksheet. For the message box example above, add a button and then right click and
select ‘Assign macro. . . ’. Enter the name of your macro, in this case popup_messagebox. Now when you click that
button the macro will be called.

3.11. Macro Functions 139

PyXLL User Guide, Release 5.8.0

Warning: The Assign Macro dialog in Excel will only list macros defined in workbooks. Any macro defined in
Python using xl_macro will not show up in this list. Instead, you must enter the name of your macro manually
and Excel will accept it.

It is also possible to call your macros from VBA. While PyXLL may be used to reduce the need for VBA in your
projects, sometimes it is helpful to be able to call python functions from VBA.

For the py_strlen example above, to call that from VBA you would use the Run VBA function, e.g.

Sub SomeVBASubroutine
x = Run("py_strlen", "my string")

End Sub

3.11.4 Calling Excel from Python

One of the main use cases for writing an Excel macro is to automate some task in Excel.

You may have done this if you’ve written any VBA in the past. When writing an Excel macro in VBA you have
access to the Excel Object Model, the API that lets you script Excel.

The same Excel Object Model is available to you from Python. The entire API is exposed as a COM interface,
which can be called from directly from your Python code.

PyXLL provides the helper function xl_app. This helper functions returns the Excel.Application COM object
as a Python object. Python has a handful of different packages for calling COM objects, and you can select which
you want to use via the com_package kwarg to xl_app. For most users, the default, pywin32 will be the best
choice.

For more help understanding how to call the Excel Object Model from Python please see Python as a VBA Re-
placement.

3.11. Macro Functions 140

https://docs.microsoft.com/en-us/office/vba/api/overview/excel/object-model

PyXLL User Guide, Release 5.8.0

The following code is an Excel Python macro that changes the current selection. It uses xl_app to get the Excel.
Application object, and then uses the Excel Object Model to make the selection.

from pyxll import xl_macro, xl_app

@xl_macro
def change_selection():

Get the Excel.Application COM object
xl = xl_app()

Get a Range in the current active sheet
xl_range = xl.ActiveSheet.Range("A1:D10")

Call the 'Select' method on the Range object
xl_range.Select()

As the Excel Object Model is the same as the API used by VBA, if you’re not sure what methods and properties to
use it can be helpful to use Excel’s VBA Macro Recorder feature. That will show you what methods and properties
you need, and you can use the same methods and properties in Python.

For full documentation of the Excel Object Model please refer to Microsoft’s documentation here https://docs.
microsoft.com/en-us/office/vba/api/overview/excel/object-model.

Warning: The xl_app helper function and the Excel Object Model should only ever be called from functions
called by Excel as a macro.

Calling into Excel from anywhere other than a macro can cause Excel to crash without warning.
Never call the Excel Object Model from a background thread.

PyXLL has another helper function, schedule_call, that will schedule a plain Python function to run in an
Excel macro, on the main Excel thread. If you need to call into Excel from anywhere other than a macro, always
use schedule_call to schedule a function to do that safely.

If you are using Jupyter in Excel via the pyxll-jupyter package, that runs the cells inside and Excel macro
and so it is safe to use xl_app there.

3.11.5 Reading Excel Values from Python

Macros will often need to read values from Excel. We can do that using the Excel Object Model in the same way
as you might have done from VBA previously.

For example, the following code gets a Range object and then gets the value using the Range.Value property.

from pyxll import xl_macro, xl_app

@xl_macro
def read_value_from_excel():

Get the Excel.Application COM object
xl = xl_app()

Get a Range in the current active sheet
xl_range = xl.ActiveSheet.Range("A1:D10")

Access the Value of the Range
value = xl_range.Value

What you will notice when reading values this way is that you can’t control the type of the value you get. For
example, in the code above we are using a range and the Python value obtained will be a list of lists. If we were to

3.11. Macro Functions 141

https://docs.microsoft.com/en-us/office/vba/api/overview/excel/object-model
https://docs.microsoft.com/en-us/office/vba/api/overview/excel/object-model
https://docs.microsoft.com/en-us/office/vba/api/overview/excel/object-model

PyXLL User Guide, Release 5.8.0

use a single cell, the Python value would be a single value.

You can use get_type_converter to access PyXLL’s type converters (including any custom type converters you
may have written) and use that to convert the raw value into the type you require. However, there is a slightly easier
way.

Using the PyXLL class XLCell we can access the value as a specified type as follows:

from pyxll import xl_macro, xl_app, XLCell

@xl_macro
def read_value_from_excel():

Get the Excel.Application COM object
xl = xl_app()

Get a Range in the current active sheet
xl_range = xl.ActiveSheet.Range("A1:D10")

Get an XLCell object from the Range object
cell = XLCell.from_range(xl_range)

Get the value as a DataFrame
df = cell.options(type="dataframe").value

3.11.6 Writing Python Values to Excel

Writing values to Excel from Python is very similar to reading values, as shown above.

While you can set the Range.Value property directly, using XLCell.value is often more convenient as it can do
any type conversions necessary for you.

For example, to write a DataFrame to a range you can do the following:

from pyxll import xl_macro, xl_app, XLCell

@xl_macro
def write_value_to_excel():

Get the Excel.Application COM object
xl = xl_app()

Get a Range in the current active sheet
xl_range = xl.ActiveSheet.Range("A1")

Get an XLCell object from the Range object
cell = XLCell.from_range(xl_range)

Create the DataFrame we want to write to Excel
df = your_code_to_construct_the_dataframe()

Write the DataFrame to Excel, automatically resizing the range to fit the data.
cell.options(auto_resize=True, type="dataframe").value = df

In the code above you can see that as well as converting the DataFrame to the type expected by Excel, XLCell can
also automatically expand the range that’s being written to fit the entire DataFrame.

For more details about the options available, see the XLCell class reference.

3.11. Macro Functions 142

PyXLL User Guide, Release 5.8.0

3.11.7 Keyboard Shortcuts

You can assign keyboard shortcuts to your macros by using the ‘shortcut’ keyword argument to the xl_macro
decorator, or by setting it in the SHORTCUTS section in the config.

Shortcuts should be one or more modifier key names (Ctrl, Shift or Alt) and a key, separated by the ‘+’ symbol.
For example, ‘Ctrl+Shift+R’.

from pyxll import xl_macro, xlcAlert

@xl_macro(shortcut="Alt+F3")
def macro_with_shortcut():

xlcAlert("Alt+F3 pressed")

If a key combination is already in use by Excel it may not be possible to assign a macro to that combination.

In addition to letter, number and function keys, the following special keys may also be used (these are not case
sensitive and cannot be used without a modifier key):

• Backspace

• Break

• CapsLock

• Clear

• Delete

• Down

• End

• Enter

• Escape

• Home

• Insert

• Left

• NumLock

• PgDn

• PgUp

• Right

• ScrollLock

• Tab

3.12 Working with Tables

New in PyXLL 5.8

In the section Macro Functions it is explained how Python functions can be exposed a Excel macros, and how these
macros can read and write Excel worksheet values.

Excel Tables can be used to make managing and analyzing a group of related data easier. In Excel, you can turn a
range of cells into an Excel Table (previously known as an Excel list).

PyXLL can read and write Excel Tables in a similar way to how ranges can be read and written. Tables can be
created and updated from Python data using macro functions.

3.12. Working with Tables 143

PyXLL User Guide, Release 5.8.0

• Writing a Table

• Reading a Table

• Updating a Table

• Tables and Worksheet Functions

• Advanced Features

– Naming Tables

– Advanced Customization

3.12.1 Writing a Table

Writing an Excel Table from a macro works in a very similar way to writing an array of data as a range.

If you’re not already familiar with writing a range of Python data from a macro function please see Writing Python
Values to Excel for a full explaination.

To write an Excel Table we use the XLCell class, and set the XLCell.value property.

As previously, we specify the data type using XLCell.options, but this time we use the special table type to
tell PyXLL to write the data as a Table instead of a range.

The table type takes one type parameter, which is the data type we want PyXLL to use when converting the Python
type to Excel values. To write a DataFramewe would use table<dataframe>. The inner type can also be param-
eterized, for example, to include the index of the DataFrame we would use table<dataframe<index=True>>.

from pyxll import xl_macro, XLCell

@xl_macro
def write_excel_table():

Get an XLCell object for the cell 'A1' in the active sheet.
We could fully specify the range, for example "[Book1]Sheet1!A1" if
needed, or use a COM Range object instead of the address string.
The table will be written with this cell as the top left of the table.
cell = XLCell.from_range("A1")

Create the DataFrame we want to write to Excel as a table
df = your_code_to_construct_the_dataframe()

Write the DataFrame to Excel as a Table
cell.options(type="table<dataframe>").value = df

The cell we use when writing the Table is the top left cell where we want the table to be written to. If there is not
enough space to write the table, a #SPILL! error will be written to Excel and a SpillError Python exception
will be raised.

When writing a table, we do not need to pass auto_resize=True to XLCell.options, the size of the table
written will always match the same of the data even if this is not specified.

3.12. Working with Tables 144

PyXLL User Guide, Release 5.8.0

3.12.2 Reading a Table

Reading the data from an Excel Table is no different from reading it from a Range. A table is really just a range
with some formatting added!

If you’re not already familiar with reading an Excel range into Python from a macro function please see Reading
Excel Values from Python for a full explaination.

When getting the XLCell instance in order to read the data, you can pass the Range corresponding to the entire
table. Or, to make things simpler, you can pass any cell from within the table and use the auto_resize=True
option to XLCell.options. When this is used on a table, the entire table will be used automatically.

from pyxll import xl_macro, XLCell

@xl_macro
def read_excel_table():

Get the XLCell object for the top left of the existing table
cell = XLCell.from_range("A1")

Read the entire table into a DataFrame by using the `auto_resize=True`
option to XLCell.options.
df = cell.options(auto_resize=True, type="dataframe").value

3.12.3 Updating a Table

To update a table written previously all that is required is to write to one of the cells in the table using the same
method explained above. The existing table will be updated instead of creating a new table.

If the new data is larger than the current table the table will be expanded, or if the new data is smaller the table
will be contracted. If there is not enough space to expand the table a #SPILL! error will be written to Excel and a
SpillError Python exception will be raised.

from pyxll import xl_macro, XLCell

@xl_macro
def update_excel_table():

Get the XLCell object for the top left of the existing table
cell = XLCell.from_range("A1")

Read the entire table into a DataFrame
df = cell.options(auto_resize=True, type="dataframe").value

Make some changes to the DataFrame
new_df = your_code_to_update_the_dataframe(df)

Update the table in Excel
cell.options(type="table<dataframe>").value = new_df

3.12. Working with Tables 145

PyXLL User Guide, Release 5.8.0

3.12.4 Tables and Worksheet Functions

In all of the code above we have used xl_macro to read and write Excel Tables.

This is because reading and writing values from Excel using the XLCell class must always be done from an Excel
macro.

Sometimes, it is desirable to be able to return data from a worksheet function. We can return DataFrames from
worksheet functions using xl_func as dynamic arrays, but what about using tables?

To do that we have to use schedule_call. This schedules a Python function to be run in such a way that it is safe
to do what we can otherwise only do in a macro.

Using schedule_call we can schedule a function that will write Python data as a table in Excel. We would like
to write the table near to where the worksheet function was called from, and to do that we use xlfCaller.

xlfCaller returns the XLCell of the function’s calling cell. Using XLCell.offset we can get one cell below
the calling cell and use that as the top left corner of our table.

For example:

from pyxll import xl_func, schedule_call, xlfCaller

@xl_func
def table_from_function():

"""A worksheet function that writes to a table."""
Get the XLCell this function was called from
cell = xlfCaller()

Create the DataFrame we want to write to Excel as a table
df = your_code_to_construct_the_dataframe()

Get the top left cell of the table we're going to write,
one row below the calling cell.
top_left = cell.offset(rows=1, columns=0)

An inner function that will be called in the future and will
write the DataFrame to a table below the calling cell.
def write_table():

top_left.options(type="table<dataframe>").value = df

Schedule the call to 'write_table' that could otherwise
only be called as part of an Excel macro.
schedule_call(write_table)

return "[OK]"

The above method using schedule_call works around the fact that we can only write tables from a macro. It
schedules a function to write the table after Excel has finished calculating, when it is possible to do so.

3.12. Working with Tables 146

PyXLL User Guide, Release 5.8.0

3.12.5 Advanced Features

Above we’ve seen how the table type can be used with XLCell.options to write Python data to an Excel table.

The same can be acheived using the Table class, and using the table type is really just shorthand for this.

The below example shows how to construct a Table instance and set that as the XLCell.value. This has the same
effect as using the table<dataframe> type.

from pyxll import xl_macro, XLCell, Table

@xl_macro
def write_excel_table():

Get an XLCell object for the cell 'A1' in the active sheet.
We could fully specify the range, for example "[Book1]Sheet1!A1" if
needed, or use a COM Range object instead of the address string.
The table will be written with this cell as the top left of the table.
cell = XLCell.from_range("A1")

Create the DataFrame we want to write to Excel as a table
df = your_code_to_construct_the_dataframe()

Construct a Table instance, wrapping our DataFrame
table = Table(df, type="dataframe")

Write the table to Excel
cell.value = table

This is a small change but it allows us to access some of the more advanced features of PyXLL’s table capabilites.

Naming Tables

When setting XLCell.value using an instance of the Table class, you can provide the name to use when creating
the Excel Table.

The Table class constructor takes a kwargs name. It also has the Table.name attribute, allowing you to query the
table named used after writing the table to Excel.

from pyxll import xl_macro, XLCell, Table

@xl_macro
def write_named_excel_table():

Get an XLCell object for the cell 'A1' in the active sheet.
We could fully specify the range, for example "[Book1]Sheet1!A1" if
needed, or use a COM Range object instead of the address string.
The table will be written with this cell as the top left of the table.
cell = XLCell.from_range("A1")

Create the DataFrame we want to write to Excel as a table
df = your_code_to_construct_the_dataframe()

Construct a named Table instance, wrapping our DataFrame
table = Table(df, type="dataframe", name="MyNamedTable")

Write the table to Excel.
When creating a new table the table name will be used.
cell.value = table

(continues on next page)

3.12. Working with Tables 147

PyXLL User Guide, Release 5.8.0

(continued from previous page)

The table name is accessible from the table.name attribute.
You can use this to get the auto-generated name if no name
was specified.
name = table.name
print(f"Table name = {name}")

Advanced Customization

Full control over how tables are written to Excel is possible by implementing a class derived from Table or
TableBase.

The TableBase class defines the methods required for tables to be written to Excel. These can be used as escape
hatches, allowing your own code to function differently to the default Table class.

Any class implemented with TableBase as a base class can be used when setting XLCell.value.

Note: Knowledge of the Excel Object Model is required to write an class derived from Table or TableBase.

When writing a table to Excel, the following happens:

1. TableBase.find_table is called to see if there is an existing ListObject object.

2. If no existing ListObject is found, TableBase.create_table is called.

3. If the ListObject size is different from that returned by TableBase.rows and TableBase.columns,
TableBase.resize_table is called.

4. TableBase.update_table is called to update the data in the ListObject table object.

5. Finally, TableBase.apply_filters and TableBase.apply_sorting are called to apply any filtering
and sorting required to the table.

Table provides the default implementation for these methods.

See the Tables API Reference for details of the Table and TableBase classes, including the methods that need to
be implemented.

3.13 Python as a VBA Replacement

• The Excel Object Model

• Accessing the Excel Object Model in Python

• Differences between VBA and Python

– Case Sensitivity

– Calling Methods

– Named Arguments

– Properties

– Properties with Arguments

– Implicit Objects and ‘With’

– Indexing Collections

• Enums and Constant Values

3.13. Python as a VBA Replacement 148

PyXLL User Guide, Release 5.8.0

• Excel and Threading

• Notes on Debugging

Everything you can write in VBA can be done in Python. This page contains information that will help you translate
your VBA code into Python.

Please note that the Excel Object Model is part of Excel and documented by Microsoft. The classes and methods
from that API used in this documentation are not part of PyXLL, and so please refer to the Excel Object Model
documentation for more details about their use.

See also Macro Functions.

3.13.1 The Excel Object Model

When programming in VBA you interact with the Excel Object Model. For example, when writing

Sub Macro1()
Range("B11:K11").Select

EndSub

what you are doing is constructing a Range object and calling the Select method on it. The Range object is part of
the Excel Object Model.

Most of what people talk about in reference to VBA in Excel is actually the Excel Object Model, rather than the
VBA language itself. Once you understand how to interact with the Excel Object Model from Python then replacing
your VBA code with Python code becomes straightforward.

The Excel Object Model is well documented by Microsoft as part of the Office VBA Reference.

The first hurdle people often face when starting to write Excel macros in Python is finding documentation for the
Excel Python classes. Once you realise that the Object Model is the same across Python and VBA you will see that
the classes documented in the Office VBA Reference are the exact same classes that you use from Python, and so
you can use the same documentation even though the example code may be written in VBA.

3.13.2 Accessing the Excel Object Model in Python

The Excel Object Model is made available to all languages using COM. Python has a couple of packages that make
calling COM interfaces very easy. If you know nothing about COM then there’s no need to worry as you don’t
need to in order to call the Excel COM API from Python.

The top-level object in the Excel Object Model is the Application object. This represents the Excel application,
and all other objects are accessed via this object.

PyXLL provides a helper function, xl_app, for retrieving the Excel Application object. By default, it uses the
Python package win32com, which is part of the pywin32 package1.

If you don’t already have the pywin32 package installed you can do so using pip:

pip install pywin32

Or if you are using Anaconda you can use conda:

conda install pywin32

You can use xl_app to access the Excel Application object from an Excel macro. The following example shows
how to re-write the Macro1 VBA code sample from the section above.

Note that in VBA there is an implicit object, which related to where the VBA Sub (macro) was written. Commonly,
VBA code is written directly on a sheet, and the sheet is implied in various calls. In the Macro1 example above,

1 If you prefer to use comtypes instead of win32com you can still use xl_app by passing com_package='comtypes'.

3.13. Python as a VBA Replacement 149

https://docs.microsoft.com/en-us/office/vba/api/overview/excel/object-model
https://docs.microsoft.com/en-us/office/vba/api/excel.range(object)
https://docs.microsoft.com/en-us/office/vba/api/excel.range.select
https://docs.microsoft.com/en-us/office/vba/api/excel.range(object)
https://docs.microsoft.com/en-us/office/vba/api/overview/excel/object-model
https://docs.microsoft.com/en-us/office/vba/api/overview/excel/object-model
https://docs.microsoft.com/en-us/office/vba/api/excel.application(object)
https://docs.microsoft.com/en-us/office/vba/api/excel.application(object)

PyXLL User Guide, Release 5.8.0

the Range is actually a method on the sheet that macro was written on. In Python, we need to explicitly get the
current active sheet instead.

from pyxll import xl_macro, xl_app

@xl_macro
def macro1():

xl = xl_app()

'xl' is an instance of the Excel.Application object

Get the current ActiveSheet (same as in VBA)
sheet = xl.ActiveSheet

Call the 'Range' method on the Sheet
xl_range = sheet.Range('B11:K11')

Call the 'Select' method on the Range.
Note the parentheses which are not required in VBA but are in Python.
xl_range.Select()

You can call into Excel using the Excel Object Model from macros and menu functions, and use a sub-set of the
Excel functionality from worksheet functions, where more care must be taken because the functions are called
during Excel’s calculation process.

You can remove these restrictions by calling the PyXLL schedule_call function to schedule a Python function
to be called in a way that lets you use the Excel Object Model safely. For example, it’s not possible to update
worksheet cell values from a worksheet function, but it is possible to schedule a call using schedule_call and
have that call update the worksheet after Excel has finished calculating.

For testing, it can also be helpful to call into Excel from a Python prompt (or a Jupyter notebook). This can also
be done using xl_app, and in that case the first open Excel instance found will be returned.

You might try this using win32com directly rather than xl_app. We do not advise this when calling your Python
code from Excel however, as it may return an Excel instance other than the one you expect.

from win32com.client.gencache import EnsureDispatch

Get the first open Excel.Application found, or launch a new one
xl = EnsureDispatch('Excel.Application')

3.13.3 Differences between VBA and Python

Case Sensitivity

Python is case sensitive. This means that code fragments like r.Value and r.value are different (note the capital
V in the first case. In VBA they would be treated the same, but in Python you have to pay attention to the case you
use in your code.

If something is not working as expected, check the PyXLL log file. Any uncaught exceptions will be logged there,
and if you have attempted to access a property using the wrong case then you will probably see an AttributeError
exception.

3.13. Python as a VBA Replacement 150

PyXLL User Guide, Release 5.8.0

Calling Methods

In Python, parentheses (()) are always used when calling a method. In VBA, they may be omitted. Neglecting
to add parentheses in Python will result in the method not being called, so it’s important to be aware of which
class attributes are methods (and must therefore be called) and which are properties (whose values are available by
reference).

For example, the method Select on the Range type is a method and so must be called with parentheses in Python,
but in VBA they can be, and usually are, omitted.

' Select is a method and is called without parentheses in VBA
Range("B11:K11").Select

from pyxll import xl_app
xl = xl_app()

In Python, the parentheses are necessary to call the method
xl.Range('B11:K11').Select()

Keyword arguments may be passed in both VBA and Python, but in Python keyword arguments use = instead of
the := used in VBA.

Accessing properties does not require parentheses, and doing so will give unexpected results! For example, the
range.Value property will return the value of the range. Adding () to it will attempt to call that value, and as
the value will not be callable it will result in an error.

from pyxll import xl_app
xl = xl_app()

Value is a property and so no parentheses are used
value = xl.Range('B11:K11').Value

Named Arguments

In VBA, named arguments are passed using Name := Value. In Python, the syntax is slightly different and only
the equals sign is used. One other important difference is that VBA is not case-sensitive but Python is. This applies
to argument names as well as method and property names.

In VBA, you might write

Set myRange = Application.InputBox(prompt := "Sample", type := 8)

If you look at the documentation for Application.InputBox you will see that the argument names are cased different
from this, and are actually ‘Prompt’ and ‘Type’. In Python, you can’t get away with getting the case wrong like you
can in VBA.

In Python, this same method would be called as

from pyxll import xl_app
xl = xl_app()

my_range = xl.InputBox(Prompt='Sample', Type=8)

3.13. Python as a VBA Replacement 151

https://docs.microsoft.com/en-us/office/vba/api/excel.application.inputbox

PyXLL User Guide, Release 5.8.0

Properties

Both VBA and Python support properties. Accessing a property from an object is similar in both languages. For
example, to fetch ActiveSheet property from the Application object you would do the following in VBA:

Set mySheet = Application.ActiveSheet

In Python, the syntax used is identical:

from pyxll import xl_app
xl = xl_app()

my_sheet = xl.ActiveSheet

Properties with Arguments

In VBA, the distinction between methods and properties is somewhat blurred as properties in VBA can take argu-
ments. In Python, a property never takes arguments. To get around this difference, the win32com Excel classes
have Get and Set methods for properties that take arguments, in addition to the property.

The Range.Offset property is an example of a property that takes optional arguments. If called with no arguments
it simply returns the same Range object. To call it with arguments in Python, the GetOffset method must be used
instead of the Offset property.

The following code activates the cell three columns to the right of and three rows down from the active cell on
Sheet1:

Worksheets("Sheet1").Activate
ActiveCell.Offset(rowOffset:=3, columnOffset:=3).Activate

To convert this to Python we must make the following changes:

• Replace the Offset property with the GetOffset method in order to pass the arguemnts.

• Replace rowOffset and columnOffset RowOffset and ColumnOffset as specified in the Range.Offset docu-
mentation.

• Call the Activate method by adding parentheses in both places it’s used.

from pyxll import xl_app
xl = xl_app()

xl.Worksheets('Sheet1').Activate()
xl.ActiveCell.GetOffset(RowOffset=3, ColumnOffset=3).Activate()

Note: You may wonder, what would happen if you were to use the Offset property in Python? As you may by now
expect, it would fail - but not perhaps in the way you might think.

If you were to call xl.ActiveCell.Offset(RowOffset=3, ColumnOffset=3) the the result would be that the
parameter RowOffset is invalid. What’s actually happening is that when xl.ActiveCell.Offset is evaluated,
the Offset property returns a Range equivalent to ActiveCell, and that Range is then called.

Range has a default method. In Python this translates to the Range class being callable, and calling it calls the
default method.

The default method for Range is Item, and so this bit of code is actually equivalent to xl.ActiveCell.Offset.
Item(RowOffset=3, ColumnOffset=3). The Item method doesn’t expect a RowOffset argument, and so that’s
why it fails in this way.

3.13. Python as a VBA Replacement 152

https://docs.microsoft.com/en-us/office/vba/api/excel.range.offset
https://docs.microsoft.com/en-us/office/vba/api/excel.range.offset

PyXLL User Guide, Release 5.8.0

Implicit Objects and ‘With’

When writing VBA code, the code is usually written ‘on’ an object like a WorkBook or a Sheet. That object is
used implicitly when writing VBA code.

If using a ‘With..End’ statement in VBA, the target of the ‘With’ statement becomes the implicit object.

If a property is not found on the current implicit object (e.g. the one specified in a ‘With..End’ statement) then the
next one is tried (e.g. the Worksheet the Sub routine is associated with). Finally, the Excel Application object is
implicitly used.

In Python there is no implicit object and the object you want to reference must be specified explicitly.

For example, the following VBA code selects a range and alters the column width.

Sub Macro2()
' ActiveSheet is a property of the Application
Set ws = ActiveSheet

With ws
' Range is a method of the Sheet
Set r = Range("A1:B10")

' Call Select on the Range
r.Select

End With

' Selection is a property of the Application
Selection.ColumnWidth = 4

End Sub

To write the same code in Python each object has to be referenced explicitly.

from pyxll import xl_macro, xl_app

@xl_macro
def macro2():

Get the Excel.Application instance
xl = xl_app()

Get the active sheet
ws = xl.ActiveSheet

Get the range from the sheet
r = ws.Range('A1:B10')

Call Select on the Range
r.Select()

Change the ColumnWidth property on the selection
xl.Selection.ColumnWidth = 4

3.13. Python as a VBA Replacement 153

PyXLL User Guide, Release 5.8.0

Indexing Collections

VBA uses parentheses (()) for calling methods and for indexing into collections.

In Python, square braces ([]) are used for indexing into collections.

Care should be taken when indexing into Excel collections, as Excel uses an index offset of 1 whereas Python uses
0. This means that to get the first item in a normal Python collection you would use index 0, but when accessing
collections from the Excel Object Model you would use 1.

3.13.4 Enums and Constant Values

When writing VBA enum values are directly accessible in the global scope. For example, you can write

Set cell = Range("A1")
Set cell2 = cell.End(Direction:=xlDown)

In Python, these enum values are available as constants in the win32com.client.constants package. The code
above would be re-written in Python as follows

from pyxll import xl_app
from win32com.client import constants

xl = xl_app()

cell = xl.Range('A1')
cell2 = cell.End(Direction=constants.xlDown)

3.13.5 Excel and Threading

In VBA everything always runs on Excel’s main thread. In Python we have multi-threading support and sometimes
to perform a long running task you may want to run code on a background thread.

The standard Python threading module is a convenient way to run code on a background thread in Python.
However, we have to be careful about how we call back into Excel from a background thread. As VBA has no
ability to use threads the Excel objects are not written in a such a way that they can be used across different threads.
Attempting to do so may result in serious problems and even cause Excel to crash!

In order to be able to work with multiple threads and still call back into Excel PyXLL has the schedule_call
function. This is used to schedule a Python function to run on Excel’s main thread in such a way that the Excel
objects can be used safely. Whenever you are working with threads and need to use the Excel API you should use
schedule_call.

For example, you might use an Excel macro to start a long running task and when that task is complete write the
result back to Excel. Instead of writing the result back to Excel from the background thread, use schedule_call
instead.

from pyxll import xl_macro, xl_app, schedule_call
import threading

@xl_macro
def start_task():

Here we're being called from a macro on the main thread
so it's safe to use pyxll.xl_app.
xl = xl_app()
value = float(xl.Selection.Value)

Use a background thread for a long running task.
(continues on next page)

3.13. Python as a VBA Replacement 154

PyXLL User Guide, Release 5.8.0

(continued from previous page)

Be careful not to pass any Excel objects to the background thread!
thread = threading.Thread(target=long_running_task, args=(value,))
thread.start()

This runs on a background thread
def long_running_task(value):

Do some work that takes some time
result = ...

We shouldn't write the result back to Excel here as we are on
a background thread. Instead use pyxll.schedule_call to write
the result back to Excel.
schedule_call(write_result, result, "A1")

This is called via pyxll.schedule_call
def write_result(result, address):

Now we're back on the main thread and it's safe to use pyxll.xl_app
xl = xl_app()
cell = xl.Range(address)
cell.Value = result

3.13.6 Notes on Debugging

The Excel VBA editor has integrating debugging so you can step through the code and see what’s happening at
each stage.

When writing Python code it is sometimes easier to write the code outside of Excel in your Python IDE before
adapting it to be called from Excel as a macro or menu function etc.

When calling your code from Excel, remember that any uncaught exceptions will be printed to the PyXLL log file
and so that should always be the first place you look to find what’s going wrong.

If you find that you need to be able to step through your Python code as it is being executed in Excel you will need a
Python IDE that supports remote debugging. Remote debugging is how debuggers connect to an external process
that they didn’t start themselves.

You can find instructions for debugging Python code running in Excel in this blog post Debugging Your Python
Excel Add-In.

3.13. Python as a VBA Replacement 155

https://www.pyxll.com/blog/debugging-your-python-excel-add-in/
https://www.pyxll.com/blog/debugging-your-python-excel-add-in/

PyXLL User Guide, Release 5.8.0

3.14 Menu Functions

• Custom Menu Items

• New Menus

• Sub-Menus

3.14.1 Custom Menu Items

The xl_menu decorator is used to expose a python function as a menu callback. PyXLL creates the menu item
for you, and when it’s selected your python function is called. That python function can call back into Excel using
win32com or comtypes to make changes to the current sheet or workbook.

Different menus can be created and you can also create submenus. The order in which the items appear is controlled
by optional keyword arguments to the xl_menu decorator.

Here’s a very simple example that displays a message box when the user selects the menu item:

from pyxll import xl_menu, xlcAlert

@xl_menu("Hello!")
def on_hello():

xlcAlert("Hello!")

Menu items may modify the current workbook, or in fact do anything that you can do via the Excel COM API.
This allows you to do anything in Python that you previously would have had to have done in VBA.

Below is an example that uses xl_app to get the Excel Application COM object and modify the current selection.
You will need to have win32com or comtypes installed for this.

from pyxll import xl_menu, xl_app

@xl_menu("win32com menu item")
def win32com_menu_item():

get the Excel Application object
xl = xl_app()

(continues on next page)

3.14. Menu Functions 156

PyXLL User Guide, Release 5.8.0

(continued from previous page)

get the current selected range
selection = xl.Selection

set some text to the selection
selection.Value = "Hello!"

3.14.2 New Menus

As well as adding menu items to the main PyXLL addin menu it’s possible to create entirely new menus.

To create a new menu, use the menu keyword argument to the xl_menu decorator.

In addition, if you want to control the order in which menus are added you may use the menu_order integer keyword
argument. The higher the value, the later in the ordering the menu will be added. The menu order my also be set
in the config (see configuration).

Below is a modification of an earlier menu example that puts the menu item in a new menu, called “New Menu”:

from pyxll import xl_menu, xlcAlert

@xl_menu("My menu item", menu="New Menu")
def my_menu_item():

xlcAlert("new menu example")

3.14.3 Sub-Menus

Sub-menus may also be created. To add an item to a sub-menu, use the sub_menu keyword argument to the
xl_menu decorator.

All sub-menu items share the same sub_menu argument. The ordering of the items within the submenu is controlled
by the sub_order integer keyword argument. In the case of sub-menus, the order keyword argument controls the
order of the sub-menu within the parent menu. The menu order my also be set in the config (see configuration).

For example, to add the sub-menu item “TEST” to the sub-menu “Sub Menu” of the main menu “My Menu”, you
would use a decorator as illustrated by the following code:

3.14. Menu Functions 157

PyXLL User Guide, Release 5.8.0

from pyxll import xl_menu, xlcAlert

@xl_menu("TEST", menu="New Menu", sub_menu="Sub Menu")
def my_submenu_item():

xlcAlert("sub menu example")

3.15 Reloading and Rebinding

• Introduction

• How to Reload PyXLL

– Reload Manually

– Automatic Reloading

– Programmatic Reloading

• Deep Reloading

• Rebinding

3.15.1 Introduction

When writing Python code to be used in Excel, there’s no need to shut down Excel and restart it every time you
make a change to your code.

Instead, you can simply tell PyXLL to reload your Python code so you can test it out immediately.

When reloading, the default behaviour is for PyXLL to only reload the Python modules listed in the modules list
on your pyxll.cfg config file. Optionally, PyXLL can also reload all the modules that those modules depend on
- this is called deep reloading. Deep reloading can take a bit longer than just reloading the modules listed in the
config, but can be helpful when working on larger projects.

There are different options that affect how and when your Python code is reloaded, which are explained in this
document. The different configuration options are also documented in the Configuring PyXLL section of the doc-
umentation.

3.15. Reloading and Rebinding 158

PyXLL User Guide, Release 5.8.0

3.15.2 How to Reload PyXLL

Before you can reload your Python modules with PyXLL, you need to make sure you have developer_mode
enabled in your pyxll.cfg file.

[PYXLL]
developer_mode = 1

This setting enables reloading and adds the “Reload PyXLL” menu item to Excel. It is enabled by default.

Reload Manually

After working on some changes to your code you can tell PyXLL to reload your modules by selecting “Reload
PyXLL” from the PyXLL menu in the Add-Ins tab.

You can also configure the Excel ribbon to have a “Reload” button. This is done for you in the example ribbon.xml
file.

A simple ribbon file with just the “Reload” button would look like this

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon>

<tabs>
<tab id="PyXLL" label="PyXLL">

<group id="Tools" label="Tools">
<button id="Reload"

size="large"
label="Reload PyXLL"
onAction="pyxll.reload" />

</group>
</tab>

</ribbon>
</customUI>

Note the “onAction” attribute is set to “pyxll.reload”. This binds that ribbon button to PyXLL’s reload function.

You can read more about configuring the ribbon here.

3.15. Reloading and Rebinding 159

PyXLL User Guide, Release 5.8.0

Automatic Reloading

Rather than have to reload manually every time you make a change to your code, PyXLL can watch and reload
automatically as soon as any of your files are saved.

To enable automatic reloading, set auto_reload = 1 in the [PYXLL] section of your config file.

[PYXLL]
auto_reload = 1

When automatic reloading is enabled, changes to the following files will cause PyXLL to reload:

• Python modules

• PyXLL config files

• Ribbon XML files

Automatic reloading works with deep reloading. If deep reloading is enabled, then any change to a Python module
that be reloaded will cause PyXLL to trigger a reload. If deep reloading is not enabled, then only the Python
modules listed in the PyXLL config will trigger a reload.

Warning: Automatic reloading is only available from PyXLL 4.3 onwards.

Programmatic Reloading

It is possible to reload PyXLL programmatically via the Python function reload or by calling the Excel macro
pyxll_reload.

Calling either the Python function or the Excel macro will cause PyXLL to reload shortly after. The reload does
not happen immediately, but after the current function or macro has completed.

3.15.3 Deep Reloading

The default behaviour when reloading is that only the modules listed in the pyxll.cfg config file are reloaded.

When working on more complex projects it is normal to have Python code organized into packages, and to have
PyXLL functions in many different Python modules. Instead of listing all of them in the config file they can be
imported from a single module.

For example, you might have a directory structure something like the following

my_excel_addin
__init__.py
functions.py
macros.py

And in my_excel_addin/__init__.py you might import functions and macros.

from . import functions
from . import macros

In your pyxll.cfg file, you would only need to list my_excel_addin.

Listing 3: my_excel_addin/__init__.py

[PYXLL]
modules =

my_excel_addin

3.15. Reloading and Rebinding 160

PyXLL User Guide, Release 5.8.0

When you reload PyXLL, only my_excel_addin would be reloaded, and so changes to my_excel_addin.functions
or my_excel_addin.macros or any other imported modules wouldn’t be discovered.

With deep reloading, PyXLL determines the dependencies between your imported modules and reloads all of the
module dependencies, in the correct order.

To enable deep reloading, set deep_reload = 1 in the [PYXLL] section of your config file.

[PYXLL]
deep_reload = 1

Not all modules can be reloaded. Sometimes because of the way some modules are written, they won’t reload
cleanly. Circular dependencies between modules is a common reason for packages to not reload cleanly, and
Python cannot reload C extension modules.

If you are having trouble with a particular package or module not reloading cleanly, you can exclude it from being
reloaded during the deep reload. To do so, list the modules you want excluded in the deep_reload_exclude list
in your PyXLL config file.

As deep reloading can take longer than normal reloading, you can limit what modules and packages are included
by setting deep_reload_include in your PyXLL config file. In the example above, because everything we’re
interested in is contained in the my_excel_addin package, adding my_excel_addin to the deep_reload_include
list would limit reloading to modules in that package.

Warning: Starting with PyXLL 4.3 onwards, packages in the site-packages folder are no longer included
when deep reloading.

To include modules in site-packages, set deep_reload_include_site_packages = 1 in the [PYXLL] sec-
tion of your config file.

3.15.4 Rebinding

As well as reloading, it is also possible to tell PyXLL to re-create its bindings between the imported Python code
and Excel. This is referred to as rebinding.

Rebinding can be useful, for example, when importing modules dynamically and updating the Excel functions after
the import is complete, without reloading.

By default rebinding occurs automatically whenever a new xl_func, xl_macro or xl_menu decorator is called.

Automatic rebinding can be disabled by setting the following in your pyxll.cfg file:

[PYXLL]
auto_rebind = 0

If automatic rebinding has been disabled you can still tell PyXLL to rebind by calling the rebind function.

For example:

from pyxll import xl_macro, rebind

@xl_macro
def import_new_functions():

"""Import a new module and then call 'rebind' to tell PyXLL to update"""
module = __import__("...")

Now the module has been imported and declared new UDFs using @xl_func
tell PyXLL to update it's Excel bindings.
rebind()

3.15. Reloading and Rebinding 161

PyXLL User Guide, Release 5.8.0

PyXLL also declares an Excel macro pyxll_rebind that you can call from VBA to do the same as the Python
rebind function.

3.16 Error Handling

• Introduction

• Standard Error Handlers

• Custom Error Handlers

3.16.1 Introduction

Any time a PyXLL function raises an uncaught Exception, it will be written to the log file as an error.

If you need to figure out what is going wrong, the log file should be your first piece of evidence. The location of
the log file is set in the PyXLL config file, and by default it is in the logs folder alongside the PyXLL add-in.

In addition to the log file, PyXLL provides ways of handling errors to present them to the user directly when they
occur. The full exception and stack trace are always written to the log file, but in many cases providing the user
with some details of the error is sufficient to let them understand the problem without having to resort to the log
file.

For example, if a worksheet function fails Excel’s default behaviour is to show an error like #NA. Consider the
following function:

@xl_func
def my_udf(x, y):

if not 1 <= x <= 100:
raise ValueError("Expected x to be between 1 and 100")

return do_something(x, y)

If you call this from Excel with x outside of 1 and 100, without an error handler the user will see #VALUE!. They
can look in the log file to see the full error, but an error handler can be used to return something more helpful.
Using the standard error handler pyxll.error_handler ##ValueError: Expected x to be between 1 and
100 would be returned1.

The configured error handler will be called for all types of functions when an uncaught Exception is raised, not
simply worksheet functions.

3.16.2 Standard Error Handlers

PyXLL provides two standard error handlers to choose from.

• pyxll.error_handler

• pyxll.quiet_error_handler

These are configured by setting error_handler in the configuration file, e.g.:

[PYXLL]
error_handler = pyxll.error_handler

1 Sometimes it’s useful to actually return an error code (eg #VALUE!) to Excel. For example, if using the =ISERROR Excel function. In
those cases, you should not set an error handler, or use a custom error handler that returns a Python Exception.

3.16. Error Handling 162

PyXLL User Guide, Release 5.8.0

The following table shows how the two different error handlers behave for the different sources of errors:

Error Source pyxll.error_handler pyxll.quiet_error_handler No Handler
Worksheet Func-
tion

Return error as string Return error as string Nothing (returns #NA! etc.)

Macro Return error as string Return error as string Nothing (returns #NA! etc.)
Menu Item Show error in message box Do nothing Do nothing
Ribbon Action Show error in message box Do nothing Do nothing
Module Import Show error in message box Do nothing Do nothing

3.16.3 Custom Error Handlers

For cases where the provided error handling isn’t suitable, you can provide your own error handler.

An error handler is simply a Python function that you reference from your configuration file, including the module
name, for example:

[PYXLL]
error_handler = my_error_handler.error_handler

The error handler takes four2 arguments, context (ErrorContext), exc_type, exc_value and exc_traceback. con-
text is a ErrorContext object that contains additional information about the error that has occurred, such as the
type of function that was being called.

The following shows a custom error handler that returns a string if the function type was a worksheet function (UDF)
or macro. For all other types, it calls pyxll.error_handler, delegating error handling to PyXLL’s standard
handler.

from pyxll import error_handler as standard_error_handler

def error_handler(context, exc_type, exc_value, exc_traceback):
"""Custom PyXLL error handler"""

For UDFs return a preview of the error as a single line
if context.error_type in (ErrorContext.Type.UDF, ErrorContext.Type.MACRO):

error = "##" + getattr(exc_type, "__name__", "Error")
msg = str(exc_value)
if msg:

error += ": " + msg
return error

For all other error types call the standard error handler
return standard_error_handler(context, exc_type, exc_value, exc_traceback)

2 Prior to PyXLL 4.3, error handlers only took three arguments and didn’t have the context argument.
PyXLL is backwards compatible with older versions. If you have an old error handler that only takes three arguments, this will be handled

automatically and that error handler will only be called for worksheet functions (UDFs) and macros.

3.16. Error Handling 163

PyXLL User Guide, Release 5.8.0

PyXLL will still log the exception, so there is no need to do that in your handler.

If you want your error handler to return an error code to Excel instead of a string, return the Exception value.
Python Exceptions are converted to Excel errors as per the following table.

Excel error Python Exception type
#NULL! LookupError
#DIV/0! ZeroDivisionError
#VALUE! ValueError
#REF! ReferenceError
#NAME! NameError
#NUM! ArithmeticError
#NA! RuntimeError

3.17 Deploying your add-in

Everything needed to run your Python code using the PyXLL add-in can be packaged together and deployed to
other users of your organization.

PyXLL is licensed per-user so you should check your license covers all the users of the add-in. If you need to add
more users to your license you can do so using the , or contact us if you are not sure.

Warning: Redistribution of the PyXLL add-in to unlicensed users is not permitted by the Software License
Agreement.

For the add-in to work your end users will need to have the following. Each can be pre-configured and packaged
so that the end user doesn’t need to install each individually or do any configuration themselves:

1. Your Python code

2. A Python environment with any dependencies installed

3. The PyXLL add-in, configured and loaded in Excel

One of the benefits of using PyXLL is that the code is separated from the Excel workbooks so that updates to the
code can be deployed without having to change each workbook that depends on it.

There are various ways to make the items listed above available to your end users. Which methods you choose will
depend on your specific use case and requirements. It’s quite usual to end up using a combination of the methods
described below.

• Sharing everything on a network drive

• Using a standalone zip file

• Building an installer

• Using a common pyxll.cfg file

• Using a startup script to install and update Python code

• Deploying the Python Environment

• Adding the PyXLL add-in to Excel

• Setuptools Entry Points

– modules entry point

– ribbon entry point

3.17. Deploying your add-in 164

PyXLL User Guide, Release 5.8.0

3.17.1 Sharing everything on a network drive

This is the simplest option as it allows your Python code to be deployed centrally, ensuring that all users see the
same code at all times.

As long as a user can read from the network drive, PyXLL can be configured to read Python modules from there.
This ensures that you don’t need to copy code around and that all users are always referencing the same version of
your code.

The PyXLL configuration can be shared by using the external_config option in the pyxll.cfg file (see Using a
common pyxll.cfg file). You can list multiple external configs which will get merged together when PyXLL loads.

The PyXLL config file itself can also be on a network drive. The environment variable PYXLL_CONFIG_FILE can
be set to tell PyXLL to load a config file from somewhere other than the default location. You can use environment
variables inside the config file so that logging gets written to the user’s local storage.

When deploying code on a network drive you will want to make the folder read-only to your users to ensure no
accidental updates occur.

To update the Python code, rather than updating in-place it is good practice to create a new folder with the updated
code and then change the pythonpath in the shared config file to that new folder. This way if there are any problems
then you can quickly revert to the previous folder, and it also avoids problems with certain files (e.g. dll and pyd
files) becoming locked while users have then open.

A typical structure for this shared folder would be (with the folder names changed to suit your requirements):

• modules-{version}

The folder containing your Python code

• python-{version}

(Optional) Folder containing your Python environment

• shared_pyxll.cfg

This would specify pythonpath = ./modules-{version}, your modules list, any other shared settings,
and optionally executable = .\python-{version}\pythonw.exe if you are including the Python en-
vironment on the network drive.

In your main pyxll.cfg file you would include the shared_pyxll.cfg file using external_config = X:\
network\folders\pyxll\shared_pyxll.cfg.

You would choose whether or not to include the Python environment on the shared folder or not depending on
whether or not each user would already have a suitable local Python environment and how fast your network drive
is. Loading Python from a slow network drive can slow down starting Excel, in which case one of the options
below may be more suitable.

To install the PyXLL add-in you can either load the pyxll.xll add-in manually into Excel, or your could script it
using the pyxll activate command (see Adding the PyXLL add-in to Excel).

3.17.2 Using a standalone zip file

Similarly to putting everything on a network drive, as above, you can combine everything into a single zip archive
for distribution to your users. You can include everything, including a Python environment, and pre-configure
PyXLL to reference it using a relative path.

To install the PyXLL add-in you would unzip the archive on the PC where you want it to be installed and then load
the PyXLL add-in in Excel. This can be scripted, and you can script the step of adding PyXLL to Excel using the
pyxll activate command (see Adding the PyXLL add-in to Excel).

Once installed, updates can be made using a Startup Script. See Using a startup script to install and update Python
code for more details about that.

A typical structure for this zip file would be (changing the folder names to suit your requirements):

3.17. Deploying your add-in 165

PyXLL User Guide, Release 5.8.0

• modules

The folder containing your Python code

• python

Folder containing your Python environment

• pyxll.xll

The PyXLL add-in

• pyxll.cfg

This would specify everything relative to the location of this file. For example, pythonpath = .\modules
and executable = .\python\pythonw.exe.

Once you have a zip file containing the above you could use a batch script to do the installation. The script would
do the following:

• Copy and unzip your_pyxll_archive.zip to C:\Your\Local\PyXLL\Install

• Run C:\Your\Local\PyXLL\Install\python\python.exe -m pyxll activate
--non-interactive C:\Your\Local\PyXLL\Install\pyxll.xll

This script could be run directly by your end users to install the add-in, or pushed out by your systems team or IT
administrators. It could even be configured to run each time the user logs in.

3.17.3 Building an installer

If you prefer to build an installer or MSI instead of using a zip file and script as above then that is also possible.
Some organizations prefer this method as they already have mechanisms for pushing out installers to users’ PCs.

As with the zip file approach above, the Python runtime can be bundled alongside PyXLL and your Python code
into a single standalone installer.

For detailed instructions and an example project for building an MSI installer, see the pyxll-installer project on
GitHub.

3.17.4 Using a common pyxll.cfg file

The PyXLL config be shared so that each user gets the same configuration, and so updates to the config can be
made once rather than on each PC. This is done by setting the external_config option in the pyxll.cfg file.

Each user still has their own pyxll.cfg file with any settings specific to them (if any), but they also use the exter-
nal_config option to source in one or more shared configs.

The external config can be a file on a network drive or a URL.

Listing 4: my_error_handler.py

[PYXLL]
external_config = https://intranet/pyxll/pyxll-shared.cfg

If more than one external config is required the external_config setting accepts a list of files and URLs.

If it is not desirable for each user to have their own pyxll.cfg file then the environment variable
PYXLL_CONFIG_FILE can be set to tell PyXLL where to load the config from. This could be a path on a net-
work drive or a URL.

When using a shared config typically you don’t want the log file to be written to the same place for every user. You
can use environment variables in the config file to avoid this, eg

[LOG]
path = %(USERPROFILE)s/pyxll/logs

3.17. Deploying your add-in 166

https://github.com/pyxll/pyxll-installer

PyXLL User Guide, Release 5.8.0

See Environment Variables for more details.

3.17.5 Using a startup script to install and update Python code

Importing Python code from a network drive can have some disadvantages. It requires a fast network, and even
then it can be slow to import the modules. It may also be against your coroprate IT policy to deploy code via a
network drive because it lacks sufficient control, or it just may not suit your deployment needs.

Using a startup script you can check what version of your Python code is currently deployed and download the
latest if necessary. Once downloaded the code is on the local PC and so importing it will be fast. When updates
are needed the script will detect there’s a newer version of the code available and download it.

Such a script might look something like this:

SET VERSION=v1
SET PYTHON_FOLDER=.\python-code-%VERSION%

REM No need to download anything if we already have the latest
IF EXIST %PYTHON_FOLDER% THEN GOTO END

REM Download and unzip the latest code
wget https://intranet/pyxll/python-code-%VERSION%.tar.gz
tar -xzf python-code-%VERSION%.tar.gz --directory %PYTHON_FOLDER%

ECHO Latest code has been downloaded to .\python-code-%VERSION%
:END

The above script is just an illustration and your script would be different depending on your needs. It could also be
a Powershell script rather than a plain batch script.

To get this script to run when Excel starts we use the startup_script option in the pyxll.cfg file. This is set to the
the path of the script to run, or it can be a URL. By using a URL (or a location on a network drive) whenever we
want to deploy a different version of the code to all of our users we only have to update the version number in the
script.

[PYXLL]
startup_script = https://intranet/pyxll/startup-script.cmd

Now the script runs when Excel starts, but the code downloaded isn’t on our Python Path and so won’t be able to
be imported. Because we’re using a different folder for each version of the code we can’t hard-code the path in our
pyxll.cfg file.

Within a startup script run by PyXLL you can run various commands, including getting and setting PyXLL options.
There’s a command pyxll-set-option that we can use to set the pythonpath option to the correct folder:

SET VERSION=v1
SET PYTHON_FOLDER=.\python-code-%VERSION%
ECHO pyxll-set-option PYTHON pythonpath %PYTHON_FOLDER%

The pyxll-set-option command is run by echoing it from the batch script. PyXLL sees this in the output
from the script and updates the pythonpath option. Calling pyxll-set-option for a multi-line option like
pythonpath appends to it rather than replacing it.

There are several other commands available from a startup script. See Startup Script for more details.

3.17. Deploying your add-in 167

PyXLL User Guide, Release 5.8.0

3.17.6 Deploying the Python Environment

The Python environment and many of the Python packages your code depends on are likely to change less often
than your main Python code. They do still need to be available to PyXLL for it to work however.

This doesn’t mean that Python actually needs to be installed on the local PC.

PyXLL can be configured to use any Python environment as long as it is accessible by the user. This means you can
take a Python environment and copy it to a network drive and have PyXLL reference it from there. For example,
where below X: is a mapped network drive:

[PYTHON]
executable = X:\PyXLL\Python\pythonw.exe

As long as the Python environment on the network drive is complete, this will work fine.

A very useful tool for creating a Python environment suitable for being relocated to a network drive is conda-pack.

Note, using a venv doesn’t create a complete Python environment and still requires the base Python install and so
cannot be used in this way.

Referencing the Python environment from a network drive will not be as fast to load as if it was installed on the
local PC. Another option is to use the startup_script option and copy a Python environment locally on demand
when Excel starts.

A startup script that downloads a Python environment would look something along the lines of the following:

SET VERSION=v1
SET PYTHON_ENV=.\python37-%VERSION%

REM No need to download anything if we already have the latest
IF EXIST %PYTHON_ENV% THEN GOTO DONE

REM Download and unzip the Python environment
wget https://intranet/pyxll/python37-%VERSION%.tar.gz
tar -xzf python37-%PYTHON_ENV%.tar.gz --directory %PYTHON_ENV%

ECHO Latest Python environment has been downloaded to .\python37-%VERSION%
:DONE

REM Set the PyXLL executable option
ECHO pyxll-set-option PYTHON executable %PYTHON_ENV%\pythonw.exe

3.17.7 Adding the PyXLL add-in to Excel

Once you have made your Python code and Python environment available to your end user, either by copying them
to the local PC or by making them available on the network drive, you will need to add the PyXLL add-in so that
it gets loaded each time Excel starts.

This can either be done manually, if the end user is comfortable managing their own Excel add-ins, or it can be
scripted for them.

To install the PyXLL add-in from a script you can use the pyxll activate sub-command. The activate sub-
command installs the PyXLL Excel add-in into Excel so that it is loaded whenever Excel starts.

When using the pyxll command from a specific Python environment, rather than the system default or currently
active environment, it can be easier to use python -m pyxll instead of running the pyxll command directly.
For example, if you have the PyXLL add-in copied locally to C:\PyXLL\pyxll.xll and Python copied locally as
C:\PyXLL\python\python.exe you would run:

> C:\PyXLL\python\python.exe -m pyxll activate --non-interactive C:\PyXLL\pyxll.xll

3.17. Deploying your add-in 168

https://conda.github.io/conda-pack/

PyXLL User Guide, Release 5.8.0

The --non-interactive switch prevents the pyxll activate command from asking the user for input or con-
firmation which makes it suitable to be called from a script.

3.17.8 Setuptools Entry Points

When distributing Python code it is usual to package it up into a wheel file using setuptools. This allows
consumers of your package to install it easily using pip (the Python package manager).

You can distribute a Python package containing PyXLL functionality in the same way. To avoid the end user of your
package from having to manually configure their pyxll.cfg file, PyXLL looks for its entry points in any installed
packages.

The entry points are configured in your setup.py file used to build your package. PyXLL supports two entry points,
pyxll.modules and pyxll.ribbon.

A simple setup.py file to build a package called your_package might look as follows:

from setuptools import setup, find_packages

setup(
name="your_package",
description="Your package description",
version="0.0.1",
packages=find_packages(),
entry_points={

"pyxll": [
"modules = your_package:pyxll_modules",
"ribbon = your_package:pyxll_ribbon"

]
}

)

To build a wheel using your setup.py file you run python setup.py bdist_wheel.

The user of your package would install the wheel by running pip install <wheel file>.

The entry points listed in this setup.py file are your_package:pyxll_modules for the pyxll/modules entry
point and your_package:pyxll_ribbon for the pyxll/ribbon entry point.

Each entry point is a reference to a function. It’s these functions that PyXLL will call to configure itself to load
your package automatically without the consumer of your package having to modify their pyxll.cfg file.

modules entry point

The modules entry point is a function that returns a list of module names for PyXLL to import when it loads.

In the above your_package example, suppose your_package contained two sub-modules your_package.
xlfuncs and your_package.xlmacros that you want to be loaded when PyXLL starts. To make that happen
you would write the your_package.pyxll_modules entry point function return both packages.

Listing 5: setup.py

def pyxll_modules():
"""entry point referenced in setup.py"""
return [

"your_package.xlfuncs",
"your_package.xlmacros",

]

3.17. Deploying your add-in 169

PyXLL User Guide, Release 5.8.0

This is of course just an example. The entry point function could be in any package (including a subpackage) that
you configure in your setup.py file.

ribbon entry point

The ribbon entry point can be used to add ribbon controls to the Excel ribbon in addition to whatever ribbon controls
are configured in the pyxll.cfg file.

The ribbon entry point function should return either a single ribbon xml resource or a list of ribbon xml resources.
These will be merged with any other ribbon files loaded and combined to create the custom ribbon UI in Excel.

See Customizing the Ribbon for the specifics of how to create a ribbon xml file.

In the above your_package example, suppose you had also included a “ribbon.xml” resource in the wheel and
you wanted to add that to the Excel ribbon. Your ribbon entry point would load the XML data from the resource
(or it could load it from a file) and return that for PyXLL to use when building the ribbon.

Listing 6: your_package/__init__.py

import pkg_resources

def pyxll_ribbon():
"""entry point referenced in setup.py"""
Load the XML resource
ribbon_xml = pkg_resources.resource_string(__name__, "ribbon.xml")

Return the ribbon XML resource for PyXLL to load
return ribbon_xml

If you are using files instead of package resources then you can also tell PyXLL the filename of the XML file. If
you have images referenced in your ribbon xml using relative paths then providing the filename will ensure that
PyXLL can load the images relative to the correct path.

Listing 7: your_package/__init__.py

import os

def pyxll_ribbon():
"""entry point referenced in setup.py"""
Get the ribbon XML filename
ribbon_file = os.path.join(os.path.dirname(__file__), "ribbon.xml")

Load the xml data
with open(ribbon_file) as fh:

ribbon_xml = fh.read()

Return the ribbon XML resource with its file name for PyXLL to load
return (ribbon_file, ribbon_xml)

When using the load_image function as your image loaded in the ribbon xml file, images can be referenced either
by filename or as a package resource name if you are building them into your package.

If you have multiple ribbon resources then the pyxll.ribbon entry point function may return a list of resources
or a list of (filename, resource) tuples.

Warning: If your Python packages are on a network drive it can be slow to look for entry points, which may
result in slow start times for Excel.

You can prevent PyXLL from looking for entry points by setting the following in your pyxll.cfg file:

3.17. Deploying your add-in 170

PyXLL User Guide, Release 5.8.0

Listing 8: your_package/__init__.py
[PYXLL]
ignore_entry_points = 1

3.18 Workbook Metadata

Some PyXLL features will add XML metadata to the Excel workbook when saving.

Features that use this metadata are:

• Recalculating On Open

• Saving Objects in the Workbook

• Cell Formatting1

Metadata used by PyXLL is added to the workbook as a CustomXMLPart, which is part of the workbook document.

The CustomXMLPart is saved in the workbook using an XML namespace specific to the PyXLL add-in so as not
to conflict with data saved by other add-ins. If you have specified a name for your add-in using the name setting
that will be used to avoid conflict with any other PyXLL add-ins you may have loaded.

If you prefer to specify the namespace to use instead of having PyXLL use it’s own namespace you can do so by
setting metadata_custom_xml_namespace in the PYXLL section of your pyxll.cfg file.

[PYXLL]
metadata_custom_xml_namespace = urn:your_name:metadata

To disable writing any metadata you can set disable_saving_metadata = 1 in the PYXLL section of your
pyxll.cfg file. Note that this will affect all PyXLL features that require metadata.

[PYXLL]
disable_saving_metadata = 1

1 Custom formatting only requires metadata when a custom formatter is applied to a Dynamic Array function.

3.18. Workbook Metadata 171

CHAPTER

FOUR

API REFERENCE

4.1 Worksheet Functions

These decorators, functions and classes are used to expose Python functions to Excel as worksheet functions
(UDFs).

Please see Worksheet Functions for complete details on writing Excel worksheet functions in Python.

See also types.

• @xl_func

• RTD

• XLAsyncHandle

4.1.1 @xl_func

xl_func([signature][, category="PyXLL"][, help_topic=""][, thread_safe=False][, macro=False][,
allow_abort][, volatile=False][, disable_function_wizard_calc=None][,
disable_replace_calc=None][, name][, auto_resize=False][, hidden=False][, transpose=False][,
recalc_on_open][, formatter=None][, nan_value][, posinf_value][, neginf_value])

xl_func is decorator used to expose python functions to Excel. Functions exposed in this way can be called
from formulas in an Excel worksheet and appear in the Excel function wizard.

Parameters
• signature (string) – string specifying the argument types and, optionally, their names

and the return type. If the return type isn’t specified the var type is assumed. eg:

"int x, string y: double" for a function that takes two arguments, x and y and
returns a double.

"float x" or "float x: var" for a function that takes a float x and returns a variant
type.

If no signature is provided the argument and return types will be inferred from any type
annotations, and if there are no type annotations then the types will be assumed to be
var.

See Standard Types for the built-in types that can be used in the signature.

• category (string) – String that sets the category in the Excel function wizard the
exposed function will appear under.

• help_topic (string) – Path of the help file (.chm) or URL that will be available from
the function wizard in Excel.

172

PyXLL User Guide, Release 5.8.0

• thread_safe (boolean) – Indicates whether the function is thread-safe or not. If True
the function may be called from multiple threads in Excel 2007 or later

• macro (boolean) – If True the function will be registered as a macro sheet equivalent
function. Macro sheet equivalent functions are less restricted in what they can do, and
in particular they can call Excel macro sheet functions such as xlfCaller.

• allow_abort (boolean) – If True the function may be cancelled by the user pressing
Esc. A KeyboardInterrupt exception is raised when Esc is pressed. If not specified the
behavior is determined by the allow_abort setting in the config (see PyXLL Settings).

Enabling this option has performance implications. See Interrupting Functions for more
details.

• volatile (boolean) – if True the function will be registered as a volatile function,
which means it will be called every time Excel recalculates regardless of whether any of
the parameters to the function have changed or not

• disable_function_wizard_calc (boolean) – Don’t call from the Excel function
wizard. This is useful for functions that take a long time to complete that would otherwise
make the function wizard unresponsive

The default value for this argument can be set in the pyxll.cfg file.

• disable_replace_calc (boolean) – Set to True to stop the function being called
from Excel’s find and replace dialog.

The default value for this argument can be set in the pyxll.cfg file.

• arg_descriptions – dict of parameter names to help strings.

• name (string) – The Excel function name. If None, the Python function name is used.

• auto_resize (boolean) – When returining an array, PyXLL can automatically resize
the range used by the formula to match the size of the result.

• hidden (boolean) – If True the UDF is hidden and will not appear in the Excel Function
Wizard.

@Since PyXLL 3.5.0

• transpose (boolean) – If true, if an array is returned it will be transposed before being
returned to Excel. This can be used for returning 1d lists as rows.

@Since PyXLL 4.2.0

• recalc_on_open (boolean) – If true, when saved and re-opened the cell calling this
function will be recalculated. The default is True for functions returning cached objects
and RTD functions, and False otherwise.

See Recalculating On Open.

@Since PyXLL 4.5.0

• formatter (pyxll.Formatter) – Formatter object to use to format the result of the
function. For brevity a dict may be used, in which case a Formatter will be constructed
from that dict.

See Cell Formatting.

@Since PyXLL 4.5.0

• nan_value – Value to use in the case that the return value is NaN.

Defaults to the global setting nan_value set in the config file, or #NUM! if not set.

Set to an Exception instance (e.g. RuntimeError()) to return an Excel error.

@Since PyXLL 5.5.0

4.1. Worksheet Functions 173

PyXLL User Guide, Release 5.8.0

• posinf_value – Value to use in the case that the return value is +Inf.

Defaults to the global setting posinf_value set in the config file, or Excel’s own nu-
meric representation of +Inf if not set.

Set to an Exception instance (e.g. RuntimeError()) to return an Excel error.

@Since PyXLL 5.5.0

• neginf_value – Value to use in the case that the return value is -Inf.

Defaults to the global setting neginf_value set in the config file, or Excel’s own nu-
meric representation of -Inf if not set.

Set to an Exception instance (e.g. RuntimeError()) to return an Excel error.

@Since PyXLL 5.5.0

Example usage:

from pyxll import xl_func

@xl_func
def hello(name):

"""return a familiar greeting"""
return "Hello, %s" % name

Python 3 using type annotations
@xl_func
def hello2(name: str) -> str:

"""return a familiar greeting"""
return "Hello, %s" % name

Or a signature may be provided as string
@xl_func("int n: int", category="Math", thread_safe=True)
def fibonacci(n):

"""naive iterative implementation of fibonacci"""
a, b = 0, 1
for i in xrange(n):

a, b = b, a + b
return a

See Worksheet Functions for more details about using the xl_func decorator, and Array Functions for more
details about array functions.

4.1.2 RTD

class RTD

RTD is a base class that should be derived from for use by functions wishing to return real time ticking data
instead of a static value.

See Real Time Data for more information.

value

Current value. Setting the value notifies Excel that the value has been updated and the new value will
be shown when Excel refreshes.

connect(self)
Called when Excel connects to this RTD instance, which occurs shortly after an Excel function has
returned an RTD object.

May be overridden in the sub-class.

4.1. Worksheet Functions 174

PyXLL User Guide, Release 5.8.0

@Since PyXLL 4.2.0: May be an async method.

disconnect(self)
Called when Excel no longer needs the RTD instance. This is usually because there are no longer any
cells that need it or because Excel is shutting down.

May be overridden in the sub-class.

@Since PyXLL 4.2.0: May be an async method.

set_error(self, exc_type, exc_value, exc_traceback)
Update Excel with an error. E.g.:

def update(self):
try:

self.value = get_new_value()
except:

self.set_error(*sys.exc_info())

4.1.3 XLAsyncHandle

class XLAsyncHandle

XLAsyncHandle instances are passed to Asynchronous Functions as the async_handle argument.

They are passed to xlAsyncReturn to return the result from an asynchronous function.

set_value(value)
Set the value on the handle and return it to Excel.

Equivalent to xlAsyncReturn.

@Since PyXLL 4.2.0

set_error(exc_type, exc_value, exc_traceback)
Return an error to Excel.

@Since PyXLL 4.2.0

Example usage:

from pyxll import xl_func
import threading
import sys

@xl_func("async_handle h, int x")
def async_func(h, x):

def thread_func(h, x):
try:

result = do_calculation(x)
h.set_value(result)

except:
result.set_error(*sys.exc_info())

thread = threading.Thread(target=thread_func, args=(h, x))
thread.start()

New in PyXLL 4.2
For Python 3.5.1 and later, asynchronous UDFs can be simplified by simply using the async keyword on the
function declaration and dropping the async_handle argument.

Async functions written in this way run in an asyncio event loop on a background thread.

4.1. Worksheet Functions 175

PyXLL User Guide, Release 5.8.0

4.2 Macro Functions

These decorators, functions and classes are used to expose Python functions to Excel as macro functions (Subs).

Please see Macro Functions for complete details on writing Excel macro function in Python.

See also types.

• @xl_macro

• xl_app

• XLCell

• XLRect

4.2.1 @xl_macro

xl_macro([signature][, allow_abort][, name][, shortcut][, nan_value][, posinf_value][, neginf_value])
xl_macro is a decorator for exposing python functions to Excel as macros. Macros can be triggered from
controls, from VBA or using COM.

Parameters
• signature (str) – An optional string that specifies the argument types and, optionally,

their names and the return type.

The format of the signature is identical to the one used by xl_func.

If no signature is provided the argument and return types will be inferred from any type
annotations, and if there are no type annotations then the types will be assumed to be
var.

• allow_abort (bool) – If True the function may be cancelled by the user pressing Esc. A
KeyboardInterrupt exception is raised when Esc is pressed. If not specified the behavior
is determined by the allow_abort setting in the config (see PyXLL Settings).

• name (string) – The Excel macro name. If None, the Python function name is used.

• shortcut (string) – Assigns a keyboard shortcut to the macro. Shortcuts should be
one or more modifier key names (Ctrl, Shift or Alt) and a key, separated by the ‘+’
symbol. For example, ‘Ctrl+Shift+R’.

If the same key combination is already in use by Excel it may not be possible to assign
a macro to that combination.

Macros can also have keyboard shortcuts assigned in the config file (see configuration).

• transpose (boolean) – If true, if an array is returned it will be transposed before being
returned to Excel.

• nan_value – Value to use in the case that the return value is NaN.

Defaults to the global setting nan_value set in the config file, or #NUM! if not set.

Set to an Exception instance (e.g. RuntimeError()) to return an Excel error.

@Since PyXLL 5.5.0

• posinf_value – Value to use in the case that the return value is +Inf.

Defaults to the global setting posinf_value set in the config file, or Excel’s own nu-
meric representation of +Inf if not set.

Set to an Exception instance (e.g. RuntimeError()) to return an Excel error.

4.2. Macro Functions 176

PyXLL User Guide, Release 5.8.0

@Since PyXLL 5.5.0

• neginf_value – Value to use in the case that the return value is -Inf.

Defaults to the global setting neginf_value set in the config file, or Excel’s own nu-
meric representation of -Inf if not set.

Set to an Exception instance (e.g. RuntimeError()) to return an Excel error.

@Since PyXLL 5.5.0

Example usage:

from pyxll import xl_macro, xlcAlert

@xl_macro
def popup_messagebox():

"""pops up a message box"""
xlcAlert("Hello")

@xl_macro
def py_strlen(s):

"""returns the length of s"""
return len(s)

See Macro Functions for more details about using the xl_macro decorator.

4.2.2 xl_app

xl_app(com_package=None)
Gets the Excel Application COM object and returns it as a win32com.Dispach, comtypes.
POINTER(IUknown), pythoncom.PyIUnknown or xlwings.App object, depending on which COM pack-
age is being used.

Many methods and properties Excel Application COM object will fail if called from outside of an Excel
macro context. Generally, xl_app should only be used from Python code called from an Excel macro1,
menuPage 177, 1, or worksheet function12. To use it from any other context, or from a background thread,
schedule a call using schedule_call.

Parameters
com_package (string) – The Python package to use when returning the COM object. It
should be None, ‘win32com’, ‘comtypes’, ‘pythoncom’ or ‘xlwings’. If None the com pack-
age set in the configuration file will be used, or ‘win32com’ if nothing is set.

Returns
The Excel Application COM object using the requested COM package.

Warning: Excel COM objects should never be passed between threads. Only use a COM object in
the same thread it was created in. Doing otherwise is likely to crash Excel! If you are using a back-
ground thread the safest thing to do is to only call into Excel using COM via functions scheduled using
schedule_call.

1 Do not use async functions when using xl_app as async functions run in the asyncio event loop on a background thread. If you need to
use xl_app from an async function, schedule it using schedule_call.

2 Certain things will not work when trying to call back into Excel with COM from an Excel worksheet function as some operations are not
allowed while Excel is calculating. For example, trying to set the value of a cell will fail. For these cases, use schedule_call to schedule a
call after Excel has finished calculating.

4.2. Macro Functions 177

PyXLL User Guide, Release 5.8.0

4.2.3 XLCell

class XLCell

XLCell represents the data and metadata for a cell (or range of cells) in Excel.

XLCell instances are passed as an xl_cell argument to a function registered with xl_func, or may be
constructed using from_range.

Some of the properties of XLCell instances can only be accessed if the calling function has been registered
as a macro sheet equivalent function3.

Example usage:

from pyxll import xl_func

@xl_func("xl_cell cell: string", macro=True)
def xl_cell_test(cell):

return "[value=%s, address=%s, formula=%s, note=%s]" % (
cell.value,
cell.address,
cell.formula,
cell.note)

from_range(range)
Static method to construct an XLCell from an Excel Range instance or address (e.g. ‘A1’).

The Range class is part of the Excel Object Model, and can be obtained via xl_app.

See Python as a VBA Replacement.

The XLCell instance returned can be used to get and set values in Excel using PyXLL type converters
and object cache.

Parameters
range – An Excel Range object or cell address as a string.

Example usage:

xl = xl_app()
range = xl.Selection
cell = XLCell.from_range(range)
cell.options(type='object').value = x

Must be called from a macro or macro sheet equivalent functionPage 178, 3

value

Get or set the value of the cell.

The type conversion when getting or setting the cell content is determined by the type passed to
XLCell.options. If no type is specified then the type conversion will be done using the var type.

Must be called from a macro or macro sheet equivalent function3

address

String representing the address of the cell, or None if a value was passed to the function and not a cell
reference.

Must be called from a macro or macro sheet equivalent function3

formula

Formula of the cell as a string, or None if a value was passed to the function and not a cell reference
or if the cell has no formula.

Must be called from a macro or macro sheet equivalent function3

3 A macro sheet equivalent function is a function exposed using xl_func with macro=True.

4.2. Macro Functions 178

PyXLL User Guide, Release 5.8.0

note

Note on the cell as a string, or None if a value was passed to the function and not a cell reference or
if the cell has no note.

Must be called from a macro or macro sheet equivalent function3

sheet_name

Name of the sheet this cell belongs to.

sheet_id

Integer id of the sheet this cell belongs to.

rect

XLRect instance with the coordinates of the cell.

is_calculated

True or False indicating whether the cell has been calculated or not. In almost all cases this will always
be True as Excel will automatically have recalculated the cell before passing it to the function.

options(self [, type][, auto_resize][, type_kwargs][, nan_value][, posinf_value][, neginf_value])
Sets the options on the XLCell instance.

Parameters
• type – Data type to use when converting values to or from Excel. The default type

is var, but any recognized types may be used, including object for getting or setting
cached objects.

• auto_resize – When setting the cell value in Excel, if auto_resize is set and the value
is an array, the cell will be expanded automatically to fit the size of the Python array.

When getting XLCell.value, if auto_resize is set then the returned value will also
include adjacent cells according to these rules:

– If the cell references a table then the entire table’s contents be use used.

– Otherwise, if the cell is part of a block of non-blank cells, the values for the entire
block are used.

Note: auto_resize was extended to work when getting values in PyXLL 5.8.0. In earlier
versions it has no effect when getting the cell value.

• type_kwargs – If setting type, type_kwargs can also be set as the options for that
type.

• nan_value – Value to use in the case that the value being set is NaN.

Defaults to the global setting nan_value set in the config file, or #NUM! if not set.

Set to an Exception instance (e.g. RuntimeError()) to return an Excel error.

@Since PyXLL 5.5.0

• posinf_value – Value to use in the case that the value being set is +Inf.

Defaults to the global setting posinf_value set in the config file, or Excel’s own
numeric representation of +Inf if not set.

Set to an Exception instance (e.g. RuntimeError()) to return an Excel error.

@Since PyXLL 5.5.0

• neginf_value – Value to use in the case that the value being set is -Inf.

Defaults to the global setting neginf_value set in the config file, or Excel’s own
numeric representation of -Inf if not set.

Set to an Exception instance (e.g. RuntimeError()) to return an Excel error.

@Since PyXLL 5.5.0

4.2. Macro Functions 179

PyXLL User Guide, Release 5.8.0

Returns
self. The cell options are modified and the same instance is returned, for easier method
chaining.

Example usage:

cell.options(type='dataframe', auto_resize=True).value = df

to_range(self, com_wrapper=None)
Return an Excel Range COM object using the COM package specified.

Parameters
com_package – COM package to use to return the COM Range object.

com_package may be any of:

• win32com (default)

• comtypes

• xlwings

@Since PyXLL 4.4.0

offset(self [, rows][, columns])
Return a clone of the XLCell, offset by rows and columns.

Parameters
• rows (int) – Number of rows to offset by.

• columns (int) – Number of columns to offset by.

@Since PyXLL 5.8.0

resize(self [, rows][, columns])
Return a clone of the XLCell, resized to rows and columns.

Parameters
• rows (int) – Number of rows after resizing (or kept the same if not specified).

• columns (int) – Number of columns after resizing (or kept the same if not specified).

@Since PyXLL 5.8.0

4.2.4 XLRect

class XLRect

XLRect instances are accessed via XLCell.rect to get the coordinates of the cell.

first_row

First row of the range as an integer.

last_row

Last row of the range as an integer.

first_col

First column of the range as an integer.

last_col

Last column of the range as an integer.

4.2. Macro Functions 180

PyXLL User Guide, Release 5.8.0

4.3 Ribbon Functions

These functions can be used to manipulate the Excel ribbon.

The ribbon can be updated at any time, for example as PyXLL is loading via the xl_on_open and xl_on_reload
event handlers, or from a menu using using xl_menu.

See the section on customizing the ribbon for more details.

• load_image

• get_ribbon_xml

• set_ribbon_xml

• set_ribbon_tab

• remove_ribbon_tab

4.3.1 load_image

load_image(name)
Loads an image file and returns it as a COM IPicture object suitable for use when customizing the ribbon.

This function can be set at the Ribbon image handler by setting the loadImage attribute on the customUI
element in the ribbon XML file.

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui"
loadImage="pyxll.load_image">

<ribbon>
<tabs>

<tab id="CustomTab" label="Custom Tab">
<group id="Tools" label="Tools">

<button id="Reload"
size="large"
label="Reload PyXLL"
onAction="pyxll.reload"
image="reload.png"/>

</group>
</tab>

</tabs>
</ribbon>

</customUI>

Or it can be used when returning an image from a getImage callback.

Parameters
name (string) – Filename or resource location of the image file to load. This may be an
absolute path or a resource location in the form module:resource.

Returns
A COM IPicture object (the exact type depends on the com_package setting in the config.

4.3. Ribbon Functions 181

PyXLL User Guide, Release 5.8.0

4.3.2 get_ribbon_xml

get_ribbon_xml()

Returns the XML used to customize the Excel ribbon bar, as a string.

See the section on customizing the ribbon for more details.

4.3.3 set_ribbon_xml

set_ribbon_xml(xml, reload=True)
Sets the XML used to customize the Excel ribbon bar.

Parameters
• xml – XML to set, as a string.

• reload – If True, the ribbon bar will be reloaded using the new XML (does not reload
PyXLL).

See the section on customizing the ribbon for more details.

4.3.4 set_ribbon_tab

set_ribbon_tab(xml, tab_id=None, reload=True)
Sets a single tab in the ribbon using an XML fragment.

Instead of replacing the whole ribbon XML this function takes a tab element from the input XML and updates
the ribbon XML with that tab.

If multiple tabs exist in the input XML, the first who’s id attribute matches tab_id is used (or simply the first
tab element if tab_id is None).

If a tab already exists in the ribbon XML with the same id attribute then it is replaced, otherwise the new
tab is appended to the tabs element.

Parameters
• xml – XML document containing at least one tab element.

• tab_id – id of the tab element to set (or None to use the first tab element in the docu-
ment).

• reload – If True, the ribbon bar will be reloaded using the new XML (does not reload
PyXLL).

4.3.5 remove_ribbon_tab

remove_ribbon_tab(tab_id, reload=True)
Removes a single tab from the ribbon XML where the tab element’s id attribute matches tab_id.

Parameters
• tab_id – id of the tab element to remove.

• reload – If True, the ribbon bar will be reloaded using the new XML (does not reload
PyXLL).

Returns
True if a tab was removed, False otherwise.

4.3. Ribbon Functions 182

PyXLL User Guide, Release 5.8.0

4.4 Menu Functions

These decorators are used to expose Python functions to Excel as menu items.

This is using the ‘old style’ Add-Ins menu in Excel. For ribbon toolbars, please see Customizing the Ribbon.

4.4.1 @xl_menu

xl_menu(name, menu=None, sub_menu=None, order=0, menu_order=0, allow_abort=None, shortcut=None)
xl_menu is a decorator for creating menu items that call Python functions. Menus appear in the ‘Addins’
section of the Excel ribbon from Excel 2007 onwards, or as a new menu in the main menu bar in earlier
Excel versions.

Parameters
• name (string) – name of the menu item that the user will see in the menu

• menu (string) – name of the menu that the item will be added to. If a menu of that
name doesn’t already exist it will be created. By default the PyXLL menu is used

• sub_menu (string) – name of the submenu that this item belongs to. If a submenu of
that name doesn’t exist it will be created

• order (int) – influences where the item appears in the menu. The higher the number,
the further down the list. Items with the same sort order are ordered lexographically. If
the item is a sub-menu item, this order influences where the sub-menu will appear in the
main menu. The menu order my also be set in the config (see configuration).

• sub_order (int) – similar to order but it is used to set the order of items within a
sub-menu

• menu_order (int) – used when there are multiple menus and controls the order in which
the menus are added

• allow_abort (boolean) – If True the function may be cancelled by the user pressing
Esc. A KeyboardInterrupt exception is raised when Esc is pressed. If not specified the
behavior is determined by the allow_abort setting in the config (see PyXLL Settings).

• shortcut (string) – Assigns a keyboard shortcut to the menu item. Shortcuts should
be one or more modifier key names (Ctrl, Shift or Alt) and a key, separated by the ‘+’
symbol. For example, ‘Ctrl+Shift+R’.

If the same key combination is already in use by Excel it may not be possible to assign
a menu item to that combination.

Example usage:

from pyxll import xl_menu, xlcAlert

@xl_menu("My menu item")
def my_menu_item():

xlcAlert("Menu button example")

See Menu Functions for more details about using the xl_menu decorator.

4.4. Menu Functions 183

PyXLL User Guide, Release 5.8.0

4.5 Plotting

See Charts and Plotting for more information about plotting Python charts in Excel.

• plot

• PlotBridgeBase

4.5.1 plot

plot(figure=None, name=None, width=None, height=None, top=None, left=None, sheet=None,
allow_svg=None, allow_resize=None, reset=False, bridge_cls=None, **kwargs)
Plots a figure to Excel as an embedded image.

This can be called from an Excel worksheet function, or from anywhere else such as a macro or menu
function. If called from a worksheet function the image will be placed below the calling cell, and repeated
calls will update the image rather than create new ones. If called from elsewhere the image will be placed
below the current selection, and each call will create a new image.

The figure can be any of the following:

• A matplotlib Figure, Subplot, Artist or Animation object

• A plotly Figure object

• A bokeh Plot object

• An altair Chart object

If no figure is provided the current matplotlib.pyplot figure is used.

Parameters
• figure – Figure to plot. This can be an instance of any of the following:

– matplotlib.figure.Figure

– matplotlib.artist.Artist

– matplotlib.axes._subplots.SubplotBase

– matplotlib.animation.Animation

– plotly.graph_objects.Figure

– bokeh.models.plots.Plot

– altair.vegalite.v4.api.Chart

If None, the active matplotlib.pyplot figure is used.

• name – Name of Picture object in Excel. If this is None then a name will be chosen, and
if called from a UDF then repeated calls will re-use the same name.

• width – Initial width of the picture in Excel, in points. If set then height must also be
set. If None the width will be taken from the figure.

• height – Initial height of the picture in Excel, in points. If set then width must also be
set. If None the height will be taken from the figure.

• top – Initial location of the top of the plot in Excel, in points. If set then left must also
be set. If None, the picture will be placed below the current or selected cell.

• left – Initial location of the left of the plot in Excel, in points. If set then top must also
be set. If None, the picture will be placed below the current or selected cell.

• sheet – Name of the sheet to add the picture to. If none, the current sheet is used.

4.5. Plotting 184

PyXLL User Guide, Release 5.8.0

• allow_svg – Some figures may be rendered as SVG, if the plotting library and the
version of Excel being used allows.

This can be disabled by setting this option to False.

If not set, the default behaviour is to allow SVG images if allow_resize is False.

The default value may be changed by setting plot_allow_svg in the [PYXLL] section
of the config file.

• allow_resize – If enabled, the figure will be re-drawn after the image is resized in
Excel, and when the selection changes.

This is enabled by default and can be disabled by setting this option to False.

The default value may be changed by setting plot_allow_svg in the [PYXLL] section
of the config file.

New in PyXLL 5.7

• reset – Reset the image size and position to the values specified. If False (default) the
arguments width, height, top and left only affect the initial size and position of the
image, allowing the user to resize and reposition it without it being reset each time it is
updated.

@Since PyXLL 5.4.0

• bridge_cls – Class to use for exporting the plot as an image. If None this will be
selected automatically based on the type of figure.

• kwargs – Additional arguments will be called to the implementation specific method for
exporting the figure to an image.

Note: The options width, height, top and left only affect the image when it is initially created. If a subsequent
call to plot updates an existing image (for example, if called from a worksheet function or if a name is passed)
then it will not be resized or moved from its current location.

4.5.2 PlotBridgeBase

class PlotBridgeBase

Base class for plotting bridges used by plot.

This can be used to add support for plotting libraries other than the standard ones supported by PyXLL.

All methods must be implemented by the derived class.

__init__(self, figure)
Construct the plot bridge for exporting a figure. The figure is the object passed to plot.

can_export(self, format)
Return True if the figure can be exported in a specific format.

Valid formats are ‘svg’, ‘png’ and ‘gif’.

get_size_hint(self, dpi)
Return (width, height) tuple the figure should be exported as or None.

Width and height are in points (72th of an inch).

If no size hint is available return None.

export(self, width, height, dpi, format, filename, **kwargs)
Export the figure to a file as a given size and format.

Parameters

4.5. Plotting 185

PyXLL User Guide, Release 5.8.0

• width – Width of the image to export in points.

• height – Height of the image to export in points.

• dpi – DPI to use to export the image.

• format – Format to export the image to. Valid formats are ‘svg’, ‘png’ and ‘gif’.

• filename – Filename to export the image to.

• kwargs – Additional kwargs passed to plot.

4.6 Custom Task Panes

See Custom User Interfaces for more information about Custom Task Panels in PyXLL.

• create_ctp

• CustomTaskPane

• CTPBridgeBase

4.6.1 create_ctp

create_ctp(control, title=None, width=None, height=None, position=CTPDockPositionRight,
position_restrict=CTPDockPositionRestrictNone, top=None, left=None, timer_interval=0.1,
bridge_cls=None)

Creates a Custom Task Pane from a UI control object.

The control object can be any of the following:

• tkinter.Toplevel

• PySide2.QtWidgets.QWidget

• PySide6.QtWidgets.QWidget

• PyQt5.QtWidgets.QWidget

• PyQt6.QtWidgets.QWidget

• wx.Frame

Parameters
• control – UI control of one of the supported types.

• title – Title of the custom task pane to be created.

• width – Initial width of the custom task pane in points.

• height – Initial height of the custom task pane in points.

• position – Where to display the custom task pane. Can be any of:

– CTPDockPositionLeft

– CTPDockPositionTop

– CTPDockPositionRight

– CTPDockPositionBottom

– CTPDockPositionFloating

4.6. Custom Task Panes 186

PyXLL User Guide, Release 5.8.0

• position_restrict – Restrict how the user can reposition the custom task pane. Can
be any of:

– CTPDockPositionRestrictNone

– CTPDockPositionRestrictNoChange

– CTPDockPositionRestrictNoHorizontal

– CTPDockPositionRestrictNoVertical

New in PyXLL 5.5

• top – Initial top position of custom task pane (only used if floating). New in PyXLL 5.2

• left – Initial left position of custom task pane (only used if floating). New in PyXLL
5.2

• timer_interval – Time in seconds between calls to CTPBridgeBase.on_timer.

The CTP bridge classes are what integrate the Python UI toolkit with the Excel Windows
message loop. They use on_timer to poll their own message queues. If you are finding
the panel is not responsive enough you can reduce the timer interval with this setting.

This can also be defaulted by setting ctp_timer_interval in the PYXLL section of the
pyxll.cfg config file.

New in PyXLL 5.1

• bridge_cls – Class to use for integrating the control into Excel. If None this will be
selected automatically based on the type of control.

Returns
CustomTaskPane (New in PyXLL 5.5)

4.6.2 CustomTaskPane

class CustomTaskPane

Wrapper around the Excel COM _CustomTaskPane type.

Returned by create_ctp.

New in PyXLL 5.5

Title

Gets the title of a CustomTaskPane object. Read-only.

Application

Gets the Application object of the host application. Read-only.

Window

Gets the parent window object of the _CustomTaskPane object. Read-only.

Visible

True if the specified _CustomTaskPane object is visible. Read-only.

ContentControl

Gets the Microsoft ActiveX® control instance displayed in the custom task pane frame. Read-only.

Height

Gets or sets the height of the CustomTaskPane object (in points). Read/write.

Width

Gets or sets the width of the task pane specified by the CustomTaskPane object. Read/write.

4.6. Custom Task Panes 187

PyXLL User Guide, Release 5.8.0

DockPosition

Gets or sets a value specifying the docked position of a _CustomTaskPane object. Read/write.

Permitted values are:

• CTPDockPositionLeft

• CTPDockPositionTop

• CTPDockPositionRight

• CTPDockPositionBottom

• CTPDockPositionFloating

DockPositionRestrict

Gets or sets a value specifying a restriction on the orientation of a _CustomTaskPane object.
Read/write.

Permitted values are:

• CTPDockPositionRestrictNone

• CTPDockPositionRestrictNoChange

• CTPDockPositionRestrictNoHorizontal

• CTPDockPositionRestrictNoVertical

Delete()

Deletes the custom task pane.

4.6.3 CTPBridgeBase

class CTPBridgeBase

Base class of bridges between the Python UI toolkits and PyXLL’s Custom Task Panes.

This can be used to add support for UI toolkits other than the standard ones supported by PyXLL.

__init__(self, control)
Construct the custom task pane bridge. The control is the object passed to create_ctp.

close(self)
Close the host CTP window.

Do not override

get_hwnd(self)
Return the window handle as an integer.

Required: Override in subclass

get_title(self)
Return the window title as a string.

Optional: Can be overridden in subclass

pre_attach(self, hwnd)
Called before the window is attached to the Custom Task Pane host window.

Optional: Can be overridden in subclass

post_attach(self, hwnd)
Called after the window is attached to the Custom Task Pane host window.

Optional: Can be overridden in subclass

4.6. Custom Task Panes 188

PyXLL User Guide, Release 5.8.0

on_close(self)
Called when the Custom Task Pane host window is closed.

Optional: Can be overridden in subclass

on_window_closed(self)
Called when control window received a WM_CLOSE Windows message.

Optional: Can be overridden in subclass

on_window_destroyed(self)
Called when control window received a WM_DESTROY Windows message.

Optional: Can be overridden in subclass

process_message(self, hwnd, msg, wparam, lparam)

Called when the Custom Task Panel host window received a Windows message.

Should return a tuple of (result, handled) where the result is an integer and handled is a bool indicating
whether the message has been handled or not. Messages that have been handled will not be passed to
the default message handler.

Returning None is equivalent to returning (0, False).

Parameters
• hwnd – Window handle

• msg – Windows message id

• wparam – wparam passed with the message

• lparam – lparam passed with the message

Optional: Can be overridden in subclass

translate_accelerator(self, hwnd, msg, wparam, lparam, modifier)
Called when the Custom Task Panel host control’s TranslateAccelerator Windows method is called.

This can be used to convert key presses into commands or events to pass to the UI toolkit control.

Should return a tuple of (result, handled) where the result is an integer and handled is a bool indicating
whether the message has been handled or not. Messages that have been handled will not be passed to
the default message handler.

Returning None is equivalent to returning (0, False).

Parameters
• hwnd – Window handle

• msg – Windows message id

• wparam – wparam passed with the message

• lparam – lparam passed with the message

• modifier – If the message is a WM_KEYDOWN message, the modifier will be set to
indicate any key modifiers currently pressed. 0x0 = no key modifiers, 0x1 = Shift key
pressed, 0x2 = Control key pressed, 0x4 = Alt key pressed.

Optional: Can be overridden in subclass

on_timer(self)
If this method is overridden then it will be called periodically and can be used to poll the UI toolkit’s
message loop.

The interval between calls can be set by passing timer_interval to create_ctp or by setting
ctp_timer_interval in the PYXLL section of the pyxll.cfg config file.

Optional: Can be overridden in subclass

4.6. Custom Task Panes 189

PyXLL User Guide, Release 5.8.0

CTPDockPositionLeft = 0

CTPDockPositionTop = 1

CTPDockPositionRight = 2

CTPDockPositionBottom = 3

CTPDockPositionFloating = 4

CTPDockPositionRestrictNone = 0

CTPDockPositionRestrictNoChange = 1

CTPDockPositionRestrictNoHorizontal = 2

CTPDockPositionRestrictNoVertical = 3

4.7 Cell Formatting

See Cell Formatting for more information about cell formatting in PyXLL.

• Formatter

• DataFrameFormatter

• DateFormatter

• ConditionalFormatter

• ConditionalFormatterBase

4.7.1 Formatter

class Formatter

Formatter for formatting values returned via xl_func, or using XLCell.options and XLCell.value.

Use Formatter.rgb for constructing color values.

Formatters may be combined by adding them together.

Custom formatters should use this class as their base class.

See Cell Formatting for more details.

Parameters
• interior_color – Value to set the interior color to.

• text_color – Value to set the text color to.

• bold – If true, set the text style to bold.

• italic – If true, set the text style to italic.

• font_size – Value to set the font size to.

• number_format – Excel number format to use.

• auto_fit – Auto-fit to the content of the cells. May be True (fit column width), False
(don’t fit), ‘columns’ (fit column width), ‘rows’ (fit row width), ‘both’ (fit column and
row width).

4.7. Cell Formatting 190

PyXLL User Guide, Release 5.8.0

apply(self, cell, value=None, datatype=None, datatype_ndim=0, datatype_kwargs={}, transpose=False)
The apply method is called to apply a formatter to a cell or range of cells.

It is called after a worksheet function decorated with xl_func has returned if using the formatter
kwarg. It can also be used directly with an XLCell instance from a macro function.

This method may be implemented by a sub-class for custom formatting. For array functions, if the
formatter should be applied cell by cell for each cell in the range, use apply_cell instead.

Parameters
• cell – Instance of an XLCell the formatting is to be applied to.

• value – The value returned from the xl_func or XLCell.value.

• datatype – The datatype of the value being formatted.

• datatye_ndim – The number of dimensions (0, 1 or 2) of the value being formatted.

• datatype_kwargs – The parameters of the datatype of the value being formatted.

• transpose – The transpose option from the xl_func decorator.

When a value is returned from an xl_func the formatter is applied after Excel has finished calculating.

The apply method is called with the value returned, and any details about the datatype of the returned
value. This allows the formatter to apply formatting relevant to the returned datatype, and can be
conditional on the returned value.

apply_cell(self, cell, value=None, datatype=None, datatype_kwargs={})
For use by custom formatters.

If you need the formatter to be called for each individual cell when formatting an array formula, override
this method instead of Formatter.apply.

Unlike Formatter.apply this method is called for each item in the returned value. If you need to
apply formatting at the array level and the item level you may override both, but ensure you call the
super-class method Formatter.apply from your override apply method.

Parameters
• cell – Instance of an XLCell the formatting is to be applied to.

• value – The value returned from the xl_func or XLCell.value.

• datatype – The datatype of the value being formatted.

• datatype_kwargs – The parameters of the datatype of the value being formatted.

clear(self, cell)
Clear any formatting from a cell, or range of cells.

This is called before applying the formatter.

For a resizing array function, the cell passed to this clear method is the previous range that was
formatted, allowing arrays to contract without leaving formatting of empty cells behind.

The default implementation clears all formatting, but this may be overridden in a sub-class if more
selective clearing is required.

Parameters
cell – Instance of XLCell that should have its formatting cleared.

apply_style(cell, style)
Apply a style dictionary to an instance of an XLCell.

This can be used to apply basic styling to a cell without having to use XLCell.to_range and
win32com.

The style dictionary may have the following entries:

4.7. Cell Formatting 191

PyXLL User Guide, Release 5.8.0

• interior_color: Interior color of the cell (see Formatter.rgb).

• text_color: Text color (see Formatter.rgb).

• bold: Set to True for bold text, False otherwise.

• italic: Set to True for italic text, False otherwise.

• font_size: Font size in points (int).

• number_format: Excel number format to apply to the cell.

• auto_fit: Auto-fit to the content of the cells. May be True (fit column width), False (don’t fit),
‘columns’ (fit column width), ‘rows’ (fit row width), ‘both’ (fit column and row width).

Parameters
• cell – Instance of XLCell to apply the style to.

• style – Dict specifying the style to be applied.

rgb(red, green, blue)
Return a color value understood by Excel.

Excel colors are in the form ‘BGR’ instead of the usual ‘RGB’ and this utility method constructs color
values from their RGB components.

Parameters
• red (int) – Red component between 0 and 255.

• green (int) – Green component between 0 and 255.

• blue (int) – Blue component between 0 and 255.

4.7.2 DataFrameFormatter

class DataFrameFormatter(Formatter)
Formatter for DataFrames.

For each argument expecting a Formatter, a dict may also be provided.

When a list of formatters is used (e.g. for the row or index formatters) the formatters will cycle through the
list and repeat. For example, to format a table with striped rows only two row formatters are needed.

__init__(rows=default_row_formatters, header=default_header_formatter,
index=default_index_formatter, columns=none, conditional_formatters=None, **kwargs)

Parameters
• rows – Formatter or list of formatters to be applied to the rows.

• header – Formatter to use for the header column names.

• index – Formatter or list of formatters to be applied to the index.

• columns – Dict of column name to formatter or list of formatters to be applied for
specific columns (in addition to the any row formatters).

• conditional_formatters – A list of :py:class`ConditionalFormatters` to be applied
in order after any other formatting has been applied.

• kwargs – Additional Formatter kwargs that will affect the entire formatted range.

default_row_formatters

List of two default formatters for alternating row formats.

4.7. Cell Formatting 192

PyXLL User Guide, Release 5.8.0

default_header_formatter

Default formatter used for any column headers.

default_index_formatter

Default formatter used for any index columns.

4.7.3 DateFormatter

class DateFormatter(Formatter)
Formatter for dates, times and datetimes.

All formats are in the standard Python datetime format.

This formatter tests the values and applies the relevant number format according to the type.

__init__(date_format='%Y-%m-%d', time_format='%H:%M:%S', datetime_format=None)

Parameters
• date_format – Format used for date values.

• time_format – Format used for time values.

• datetime_format – Format used for datetime values.

If datetime_format is not specified then it is constructed by combining date_format and time_format.

4.7.4 ConditionalFormatter

class ConditionalFormatter(ConditionalFormatterBase)
Conditional formatter for use with DataFrameFormatter.

This can be used to apply formatting to a DataFrame that is conditional on the values in the DataFrame.

The ConditionalFormatter works by evaluating an expression on the DataFrame using DataFrame.eval.
Rows where the expression returns True have a formatter applied to them. The formatting can be further
restricted to one or more columns.

To apply different formats to different values use multiple ConditionalFormatters.

__init__(expr, formatter, columns=None, **kwargs)

Parameters
• expr – Boolean expression for selecting rows to which the formatter will apply.

• formatter – Formatter that will be applied to the selected cells.

• columns – Column name or list of columns that the formatter will be applied to. May
also be a callable, in which case it should accept a DataFrame and return a column or
list of columns.

• kwargs – Additional arguments passed to DataFrame.eval when selecting the rows
to apply the formatter to.

The following example shows how to color rows green where column A is greater than 0 and red where
column A is less than 0.

from pyxll import DataFrameFormatter, ConditionalFormatter, Formatter, xl_func

green_formatter = Formatter(interior_color=Formatter.rgb(0, 0xff, 0))
red_formatter = Formatter(interior_color=Formatter.rgb(0xff, 0, 0))

a_gt_zero = ConditionalFormatter("A > 0", formatter=green_formatter)
(continues on next page)

4.7. Cell Formatting 193

PyXLL User Guide, Release 5.8.0

(continued from previous page)

a_lt_zero = ConditionalFormatter("A < 0", formatter=red_formatter)

df_formatter = DataFrameFormatter(conditional_formatters=[
a_gt_zero,
a_lt_zero])

@xl_func("var x: dataframe", formatter=df_formatter, auto_resize=True)
def load_dataframe(x):

load a dataframe with column 'A'
return df

4.7.5 ConditionalFormatterBase

class ConditionalFormatterBase

Base class for conditional formatters.

Subclass this class to create your own custom conditional formatters for use with DataFrameFormatter.

get_formatters(self, df)

Parameters
df – DataFrame to be formatted.

Returns
A new DataFrame with the same index and columns as ‘df’ with values being instances
of the Formatter class.

Where no formatting is to be applied the returned DataFrame value should be None.

4.8 Tables

PyXLL can read and write Excel tables, as well as plain ranges of data.

Please see Working with Tables for more details.

4.8.1 Table

class Table(TableBase)
The Table class is used to write an Excel table from a macro function using XLCell.value.

For example, the following will write a pandas DataFrame as a table in Excel.

from pyxll import xl_macro, XLCell, Table

@xl_macro
def write_excel_table():

Get an XLCell object for the cell 'A1' in the active sheet.
We could fully specify the range, for example "[Book1]Sheet1!A1" if
needed, or use a COM Range object instead of the address string.
The table will be written with this cell as the top left of the table.
cell = XLCell.from_range("A1")

Create the DataFrame we want to write to Excel as a table
df = your_code_to_construct_the_dataframe()

(continues on next page)

4.8. Tables 194

PyXLL User Guide, Release 5.8.0

(continued from previous page)

Construct a Table instance, wrapping our DataFrame
table = Table(df, type="dataframe")

Write the table to Excel
cell.value = table

The Table class can be used as a base class for custom table classes with methods overriden to customize
the writing and updating of Excel tables.

The methods available to override are documented in the base class, TableBase.

__init__(data, name=None, type=None, **kwargs)

Parameters
• data – DataFrame or other type that can be converted to var[][].

• name – Table name (optional)

• type – Type signature for data. If None, data must be a pandas or polars DataFrame
or a list of lists.

• kwargs – Additional type parameters.

4.8.2 TableBase

class TableBase

Base class of Table.

The TableBase class can be used as a base class for user defined table classes to customize how tables get
written to Excel.

When writing a table to Excel, for example:

cell = XLCell.from_range(rng)
cell.value = Table(...)

the following happens:

1. TableBase.find_table is called to see if there is an existing ListObject object.

2. If no existing ListObject is found, TableBase.create_table is called.

3. If the ListObject size is different from that returned by TableBase.rows and TableBase.columns,
TableBase.resize_table is called.

4. TableBase.update_table is called to update the data in the ListObject table object.

5. Finally, TableBase.apply_filters and TableBase.apply_sorting are called to apply any fil-
tering and sorting required to the table.

Note: Knowledge of the Excel Object Model is required to write an implementation of this class.

com_package(self)
Return the com_package to use when passing COM objects to methods of this class.

Can be one of pythoncom, win32com, comtypes or None to use the default set in the pyxll.cfg file.

find_table(self, xl_range)
Finds the ListObject for the table.

This is called when writing a table to a range to find an existing table to update, if there is one.

4.8. Tables 195

PyXLL User Guide, Release 5.8.0

Parameters
xl_range – Range where the table is being written to as a Range COM object.

Returns
ListObject COM object or None if not found.

create_table(self, xl_range)
Creates a new ListObject for the table.

This is called if find_table returns None.

Parameters
xl_range – Range where the table should be placed as a Range COM object.

Returns
ListObject COM object.

rows(self)
Return the number of rows in the table, excluding any header row.

columns(self)
Return the number of columns in the table.

resize_table(self, xl_list_object, rows, columns)
Resizes the ListObject to match the new data.

Parameters
• xl_list_object – Existing table as a ListObject COM object.

• rows – Number of rows to resize the table to (excluding header row).

• columns – Number of columns to resize the table to.

Returns
ListObject COM object.

update_table(self, xl_list_object)
Update the ListObject by setting the data on it.

Parameters
xl_list_object – Existing table as a ListObject COM object.

apply_filters(self, xl_list_object)
Apply any filters to the table object.

Parameters
xl_list_object – Existing table as a ListObject COM object.

apply_sorting(self, xl_list_object)
Apply any sorting to the table object.

Parameters
xl_list_object – Existing table as a ListObject COM object.

on_error(self, exc_value, xl_range)
Called if an error occurs when creating or updating a table.

Parameters
• exc_value – The exception object raised.

• xl_range – The range that was to be used for the table.

4.8. Tables 196

PyXLL User Guide, Release 5.8.0

4.9 Errors and Exceptions

• get_last_error

• ErrorContext

• ObjectCacheKeyError

• SpillError

4.9.1 get_last_error

get_last_error(xl_cell)
When a Python function is called from an Excel worksheet, if an uncaught exception is raised PyXLL caches
the exception and traceback as well as logging it to the log file.

The last exception raised while evaluating a cell can be retrieved using this function.

The cache used by PyXLL to store thrown exceptions is limited to a maximum size, and so if there are more
cells with errors than the cache size the least recently thrown exceptions are discarded. The cache size may
be set via the error_cache_size setting in the config.

When a cell returns a value and no exception is thrown any previous error is not discarded. This is because
doing so would add additional performance overhead to every function call.

Parameters
xl_cell – An XLCell instance or a COM Range object (the exact type depends on the
com_package setting in the config.

Returns
The last exception raised by a Python function evaluated in the cell, as a tuple (type, value,
traceback).

Example usage:

from pyxll import xl_func, xl_menu, xl_version, get_last_error
import traceback

@xl_func("xl_cell: string")
def python_error(cell):

"""Call with a cell reference to get the last Python error"""
exc_type, exc_value, exc_traceback = pyxll.get_last_error(cell)
if exc_type is None:

return "No error"

return "".join(traceback.format_exception_only(exc_type, exc_value))

@xl_menu("Show last error")
def show_last_error():

"""Select a cell and then use this menu item to see the last error"""
selection = xl_app().Selection
exc_type, exc_value, exc_traceback = get_last_error(selection)

if exc_type is None:
xlcAlert("No error found for the selected cell")
return

(continues on next page)

4.9. Errors and Exceptions 197

PyXLL User Guide, Release 5.8.0

(continued from previous page)

msg = "".join(traceback.format_exception(exc_type, exc_value, exc_traceback))
if xl_version() < 12:

msg = msg[:254]

xlcAlert(msg)

4.9.2 ErrorContext

class ErrorContext

An ErrorContext is passed to any error handler specified in the pyxll.cfg file.

When an unhandled exception is raised, the error handler is called with a context object and the exception
details.

See Error Handling for details about customizing PyXLL’s error handling.

type

Type of function where the exception occurred.

Can be any of the attributes of the ErrorContext.Type class.

function_name

Name of the function being called when the error occurred.

This may be none if the error was not the result of calling a function (eg when type ==
ErrorContext.Type.IMPORT).

import_errors

Only applicable when type == ErrorContext.Type.IMPORT.

A list of (modulename, (exc_type, exc_value, exc_traceback)) for all modules that failed
to import.

ErrorContext.Type:

Enum-style type to indicate the origination of the error.

UDF

Used to indicate the error was raised while calling a UDF.

MACRO

Used to indicate the error was raised while calling a macro.

MENU

Used to indicate the error was raised while calling a menu function.

RIBBON

Used to indicate the error was raised while calling a ribbon function.

IMPORT

Used to indicate the error was raised while importing a Python module.

4.9. Errors and Exceptions 198

PyXLL User Guide, Release 5.8.0

4.9.3 ObjectCacheKeyError

class ObjectCacheKeyError(KeyError)
ObjectCacheKeyError is raised when attempting to retrieve an object from PyXLL’s object cache with an
object handle missing from the cache.

See Cached Objects for details of how to pass Python objects between Python and Excel using PyXLL’s
object cache feature.

4.9.4 SpillError

class SpillError(RuntimeError)
SpillError is raised when attempting to write Python data to Excel using XLCell.value that doesn’t fit
in the target range, and would cause existing data to be overwritten if the target range was to be resized, and
resizing is enabled.

Resizing occurs when the value being written is larger than the cells referenced by the XLCell instance and,
either auto_resize=True is passed to XLCell.options, or when writing an Excel table (tables are always
resized to fit the data being written).

4.10 Utility Functions

• schedule_call

• reload

• rebind

• xl_version

• get_config

• get_dialog_type

• cached_object_count

• get_event_loop

4.10.1 schedule_call

schedule_call(func, *args, delay=0, nowait=False, retries=0, retry_delay=0, retry_backoff=1.0,
retry_filter=None, disable_calculation=False, disable_screen_updating=False)

Schedule a function to be called after the current Excel calculation cycle has completed.

The function is called in an Excel macro context so it is safe to use xl_app and other COM and macro
functions.

This can be used by worksheet functions that need to modify the worksheet where calling back into Excel
would fail or cause a deadlock.

From Python 3.7 onwards when called from the PyXLL asyncio event loop and ‘nowait’ is not set this
function returns an asyncio.Future. This future can be awaited on to get the result of the call (see warning
about awaiting in an async UDF below).

NOTE: In the stubs version (not embedded in PyXLL) the function is always called immediately and will
not retry.

Parameters

4.10. Utility Functions 199

PyXLL User Guide, Release 5.8.0

• func – Function or callable object to call in an Excel macro context at some time in the
near future.

• args – Arguments to be passed to the the function.

• delay – Delay in seconds to wait before calling the function.

• nowait – Do not return a Future even if called from the asyncio event loop.

• retries – Integer number of times to retry.

• retry_delay – Time in seconds to wait between retries.

• retry_backoff – Multiplier to apply to ‘retry_delay’ after each retry. This can be used
to increase the time between each retry by setting ‘retry_backoff’ to > 1.0.

• retry_filter – Callable that receives the exception value in the case of an error. It
should return True if a retry should be attempted or False otherwise.

• disable_calculation – Disable automatic calculations while the callback is being
called. This switches the Excel calculation mode to manual and restores it to its previous
mode after the call is complete.

New in PyXLL 5.2

• disable_screen_updating – Disable Excel’s screen updating while the callback is
being called. Screen updating is restored to its previous mode after the call is complete.

New in PyXLL 5.2

Example usage:

from pyxll import xl_func, xl_app, xlfCaller, schedule_call

@xl_func(macro=True)
def set_values(rows, cols, value):

"""Copies 'value' to a range of rows x cols below the calling cell."""

Get the address of the calling cell
caller = xlfCaller()
address = caller.address

The update is done asynchronously so as not to block Excel
by updating the worksheet from a worksheet function.
def update_func():

xl = xl_app()
xl_range = xl.Range(address)

get the cell below and expand it to rows x cols
xl_range = xl.Range(range.Resize(2, 1), range.Resize(rows+1, cols))

and set the range's value
xl_range.Value = value

Schedule calling the update function
pyxll.schedule_call(update_func)

return address

Note: This function doesn’t allow passing keyword arguments to the schedule function. To do that, use
functools.partial().

4.10. Utility Functions 200

PyXLL User Guide, Release 5.8.0

Will schedule "print("Hello", flush=True)"
schedule_call(functools.partial(print, "Hello", flush=True))

Warning: If called from an async UDF it is important not to await on the result of this call! Doing so
is likely to cause a deadlock resulting in the Excel process hanging.

This is because the scheduled call won’t run until the current calculation has completed, so your function
will not complete if awaiting for the result.

4.10.2 reload

reload()

Causes the PyXLL addin and any modules listed in the config file to be reloaded once the calling function
has returned control back to Excel.

If the ‘deep_reload’ configuration option is turned on then any dependencies of the modules listed in the
config file will also be reloaded.

The Python interpreter is not restarted.

4.10.3 rebind

rebind()

Causes the PyXLL addin to rebuild the bindings between the exposed Python functions and Excel once the
calling function has returned control back to Excel.

This can be useful when importing modules or declaring new Python functions dynamically and you want
newly imported or created Python functions to be exposed to Excel without reloading.

Example usage:

from pyxll import xl_macro, rebind

@xl_macro
def load_python_modules():

import another_module_with_pyxll_functions
rebind()

4.10.4 xl_version

xl_version()

Returns
the version of Excel the addin is running in, as a float.

• 8.0 => Excel 97

• 9.0 => Excel 2000

• 10.0 => Excel 2002

• 11.0 => Excel 2003

• 12.0 => Excel 2007

• 14.0 => Excel 2010

4.10. Utility Functions 201

PyXLL User Guide, Release 5.8.0

• 15.0 => Excel 2013

• 16.0 => Excel 2016

4.10.5 get_config

get_config()

Returns
the PyXLL config as a ConfigParser.SafeConfigParser instance

See also Configuring PyXLL.

4.10.6 get_dialog_type

get_dialog_type()

Returns
the type of the current dialog that initiated the call into the current Python function

xlDialogTypeNone

or xlDialogTypeFunctionWizard

or xlDialogTypeSearchAndReplace

xlDialogTypeNone = 0

xlDialogTypeFunctionWizard = 1

xlDialogTypeSearchAndReplace = 2

4.10.7 cached_object_count

cached_object_count()

Returns the current number of cached objects.

When objects are returns from worksheet functions using the object or var type they are stored in an
internal object cache and a handle is returned to Excel. Once the object is no longer referenced in Excel the
object is removed from the cache automatically.

See Cached Objects.

4.10.8 get_event_loop

get_event_loop()

New in PyXLL 4.2
Get the async event loop used by PyXLL for scheduling async tasks.

If called in Excel and the event loop is not already running it is started.

If called outside of Excel then the event loop is returned without starting it.

Returns
asyncio.AbstractEventLoop

See Asynchronous Functions.

4.10. Utility Functions 202

PyXLL User Guide, Release 5.8.0

4.11 Event Handlers

These decorators enable the user to register functions that will be called when certain events occur in the PyXLL
addin.

• @xl_on_open

• @xl_on_reload

• @xl_on_close

• @xl_license_notifier

4.11.1 @xl_on_open

xl_on_open(func)
Decorator for callbacks that should be called after PyXLL has been opened and the user modules have been
imported.

The callback takes a list of tuples of three three items: (modulename, module, exc_info)

When a module has been loaded successfully, exc_info is None.

When a module has failed to load, module is None and exc_info is the exception information (exc_type,
exc_value, exc_traceback).

Example usage:

from pyxll import xl_on_open

@xl_on_open
def on_open(import_info):

for modulename, module, exc_info in import_info:
if module is None:

exc_type, exc_value, exc_traceback = exc_info
... do something with this error ...

4.11.2 @xl_on_reload

xl_on_reload(func)
Decorator for callbacks that should be called after a reload is attempted.

The callback takes a list of tuples of three three items: (modulename, module, exc_info)

When a module has been loaded successfully, exc_info is None.

When a module has failed to load, module is None and exc_info is the exception information (exc_type,
exc_value, exc_traceback).

Example usage:

from pyxll import xl_on_reload, xlcCalculateNow

@xl_on_reload
def on_reload(reload_info):

for modulename, module, exc_info in reload_info:
if module is None:

exc_type, exc_value, exc_traceback = exc_info
(continues on next page)

4.11. Event Handlers 203

PyXLL User Guide, Release 5.8.0

(continued from previous page)

... do something with this error ...

recalcuate all open workbooks
xlcCalculateNow()

4.11.3 @xl_on_close

xl_on_close(func)
Decorator for registering a function that will be called when Excel is about to close.

This can be useful if, for example, you’ve created some background threads and need to stop them cleanly for
Excel to shutdown successfully. You may have other resources that you need to release before Excel closes
as well, such as COM objects, that would prevent Excel from shutting down. This callback is the place to do
that.

This callback is called when the user goes to close Excel. However, they may choose to then cancel the
close operation but the callback will already have been called. Therefore you should ensure that anything
you clean up here will be re-created later on-demand if the user decides to cancel and continue using Excel.

To get a callback when Python is shutting down, which occurs when Excel is finally quitting, you should
use the standard atexit Python module. Python will not shut down in some circumstances (e.g. when a non-
daemonic thread is still running or if there are any handles to Excel COM objects that haven’t been released)
so a combination of the two callbacks is sometimes required.

Example usage:

from pyxll import xl_on_close

@xl_on_close
def on_close():

print("closing...")

4.11.4 @xl_license_notifier

xl_license_notifier(func)
Decorator for registering a function that will be called when PyXLL is starting up and checking the license
key.

It can be used to alert the user or to email a support or IT person when the license is coming up for renewal,
so a new license can be arranged in advance to minimize any disruption.

The registered function takes 4 arguments: string name, datetime.date expdate, int days_left, bool
is_perpetual.

If the license is perpetual (doesn’t expire) expdate will be the end date of the maintenance agreement (when
maintenance builds are available until) and days_left will be the days between the PyXLL build date and
expdate.

Example usage:

from pyxll import xl_license_notifier

@xl_license_notifier
def my_license_notifier(name, expdate, days_left, is_perpetual):

if days_left < 30:
... do something here...

4.11. Event Handlers 204

PyXLL User Guide, Release 5.8.0

4.12 Excel C API Functions

PyXLL exposes certain functions from the Excel C API. These mostly should only be called from a worksheet,
menu or macro functions, and some should only be called from macro-sheet equivalent functions1.

Functions that can only be called from a macro or menu can be called from elsewhere using schedule_call. This
allows these C API functions to be called as schedule_call schedules a function call on Excel’s main thread and
in a macro context.

• xlfCaller

• xlfSheetId

• xlfGetWorkspace

• xlfGetWorkbook

• xlfGetWindow

• xlfWindows

• xlfVolatile

• xlcAlert

• xlcCalculation

• xlcCalculateNow

• xlcCalculateDocument

• xlAsyncReturn

• xlAbort

• xlSheetNm

• xlfGetDocument

4.12.1 xlfCaller

xlfCaller()

Returns
calling cell as an XLCell instance.

Callable from any function, but most properties of XLCell are only accessible from macro sheet equivalent
functionsPage 205, 1

4.12.2 xlfSheetId

xlSheetId(sheet_name)

Returns
integer sheet id from a sheet name (e.g. ‘[Book1.xls]Sheet1’)

1 A macro sheet equivalent function is a function exposed using xl_func with macro=True.

4.12. Excel C API Functions 205

PyXLL User Guide, Release 5.8.0

4.12.3 xlfGetWorkspace

xlfGetWorkspace(arg_num)

Parameters
arg_num (int) – number of 1 to 72 specifying the type of workspace information to return

Returns
depends on arg_num

4.12.4 xlfGetWorkbook

xlfGetWorkbook(arg_num workbook=None)

Parameters
• arg_num (int) – number from 1 to 38 specifying the type of workbook information to

return

• workbook (string) – workbook name

Returns
depends on arg_num

4.12.5 xlfGetWindow

xlfGetWindow(arg_num, window=None)

Parameters
• arg_num (int) – number from 1 to 39 specifying the type of window information to

return

• window (string) – window name

Returns
depends on arg_num

4.12.6 xlfWindows

xlfWindows(match_type=0, mask=None)

Parameters
• match_type (int) – a number from 1 to 3 specifying the type of windows to match

1 (or omitted) = non-add-in windows

2 = add-in windows

3 = all windows

• mask (string) – window name mask

Returns
list of matching window names

4.12. Excel C API Functions 206

PyXLL User Guide, Release 5.8.0

4.12.7 xlfVolatile

xlfVolatile(volatile)

Parameters
volatile (bool) – boolean indicating whether the calling function is volatile or not.

Usually it is better to declare a function as volatile via the xl_func decorator. This function can be used to
make a function behave as a volatile or non-volatile function regardless of how it was declared, which can
be useful in some cases.

Callable from a macro equivalent function only1

4.12.8 xlcAlert

xlcAlert(alert)
Pops up an alert window.

Callable from a macro or menu function only2

Parameters
alert (string) – text to display

4.12.9 xlcCalculation

xlcCalculation(calc_type)
set the calculation type to automatic or manual.

Callable from a macro or menu function only2

Parameters
calc_type (int) – xlCalculationAutomatic

or xlCalculationSemiAutomatic

or xlCalculationManual

xlCalculationAutomatic = 1

xlCalculationSemiAutomatic = 2

xlCalculationManual = 3

4.12.10 xlcCalculateNow

xlcCalculateNow()

recalculate all cells that have been marked as dirty (i.e. have dependencies that have changed) or that are
volatile functions.

Equivalent to pressing F9.

Callable from a macro or menu function only2

2 Some Excel functions can only be called from a macro or menu. To call them from another context use async_call.

4.12. Excel C API Functions 207

PyXLL User Guide, Release 5.8.0

4.12.11 xlcCalculateDocument

xlcCalculateDocument()

recalculate all cells that have been marked as dirty (i.e. have dependencies that have changed) or that are
volatile functions for the current worksheet only

Callable from a macro or menu function only2

4.12.12 xlAsyncReturn

xlAsyncReturn(handle, value)
Used by asynchronous functions to return the result to Excel see Asynchronous Functions

This function can be called from any thread and doesn’t have to be from a macro sheet equivalent function

Parameters
• handle (object) – async handle passed to the worksheet function

• value (object) – value to return to Excel

4.12.13 xlAbort

xlAbort(retain=True)
Yields the processor to other tasks in the system and checks whether the user has pressed ESC to cancel a
macro or workbook recalculation.

Parameters
retain (bool) – If False and a break condition has been set it is reset, otherwise don’t change
the break condition.

Returns
True if the user has pressed ESC, False otherwise.

4.12.14 xlSheetNm

xlSheetNm(sheet_id)

Returns
sheet name from a sheet id (as returned by xlSheetId or XLCell.sheet_id).

4.12.15 xlfGetDocument

xlfGetDocument(arg_num[, name])
Parameters

• arg_num (int) – number from 1 to 88 specifying the type of document information to
return

• name (string) – sheet or workbook name

Returns
depends on arg_num

4.12. Excel C API Functions 208

CHAPTER

FIVE

EXAMPLES

5.1 UDF Examples

All examples are included in the PyXLL download.

Plain text version

"""
PyXLL Examples: Worksheet functions

The PyXLL Excel Addin is configured to load one or more
python modules when it's loaded. Functions are exposed
to Excel as worksheet functions by decorators declared in
the pyxll module.

Functions decorated with the xl_func decorator are exposed
to Excel as UDFs (User Defined Functions) and may be called
from cells in Excel.
"""

#
1) Basics - exposing functions to Excel
#

#
xl_func is the main decorator and is used for exposing
python functions to excel.
#
from pyxll import xl_func

#
Decorating a function with xl_func is all that's required
to make it callable in Excel as a worksheet function.
#
@xl_func
def basic_pyxll_function_1(x, y, z):

"""returns (x * y) ** z """
return (x * y) ** z

#
xl_func takes an optional signature of the function to be exposed to excel.
There are a number of basic types that can be used in
the function signature. These include:
int, float, bool and string

(continues on next page)

209

PyXLL User Guide, Release 5.8.0

(continued from previous page)

There are more types that we'll come to later.
#

@xl_func("int x, float y, bool z: float")
def basic_pyxll_function_2(x, y, z):

"""if z return x, else return y"""
if z:

we're returning an integer, but the signature
says we're returning a float.
PyXLL will convert the integer to a float for us.
return x

return y

#
You can change the category the function appears under in
Excel by using the optional argument 'category'.
#

@xl_func(category="My new PyXLL Category")
def basic_pyxll_function_3(x):

"""docstrings appear as help text in Excel"""
return x

#
2) The var type
#

#
A basic type is the var type. This can represent any
of the basic types, depending on what type is passed to the
function, or what type is returned.
#
When no type information is given the var type is used.
#

@xl_func("var x: string")
def var_pyxll_function_1(x):

"""takes an float, bool, string, None or array"""
we'll return the type of the object passed to us, pyxll
will then convert that to a string when it's returned to
excel.
return type(x)

#
If var is the return type. PyXll will convert it to the
most suitable basic type. If it's not a basic type and
no suitable conversion can be found, it will be converted
to a string and the string will be returned.
#

@xl_func("bool x: var")
def var_pyxll_function_2(x):

"""if x return string, else a number"""

(continues on next page)

5.1. UDF Examples 210

PyXLL User Guide, Release 5.8.0

(continued from previous page)

if x:
return "var can be used to return different types"

return 123.456

#
3) Date and time types
#

#
There are three date and time types: date, time, datetime
#
Excel represents dates and times as floating point numbers.
The pyxll datetime types convert the excel number to a
python datetime.date, datetime.time and datetime.datetime
object depending on what type you specify in the signature.
#
dates and times may be returned using their type as the return
type in the signature, or as the var type.
#

import datetime

@xl_func("date x: string")
def datetime_pyxll_function_1(x):

"""returns a string description of the date"""
return "type=%s, date=%s" % (type(x), x)

@xl_func("time x: string")
def datetime_pyxll_function_2(x):

"""returns a string description of the time"""
return "type=%s, time=%s" % (type(x), x)

@xl_func("datetime x: string")
def datetime_pyxll_function_3(x):

"""returns a string description of the datetime"""
return "type=%s, datetime=%s" % (type(x), x)

@xl_func("datetime[][] x: datetime")
def datetime_pyxll_function_4(x):

"""returns the max datetime"""
m = datetime.datetime(1900, 1, 1)
for row in x:

m = max(m, max(row))
return m

#
4) xl_cell
#
The xl_cell type can be used to receive a cell
object rather than a plain value. The cell object
has the value, address, formula and note of the
reference cell passed to the function.
#

(continues on next page)

5.1. UDF Examples 211

PyXLL User Guide, Release 5.8.0

(continued from previous page)

The function must be a macro sheet equivalent function
in order to access the value, address, formula and note
properties of the cell.
#

@xl_func("xl_cell cell: string", macro=True)
def xl_cell_example(cell):

"""a cell has a value, address, formula and note"""
return "[value=%s, address=%s, formula=%s, note=%s]" % (cell.value,

cell.address,
cell.formula,
cell.note)

#
5) recalc_on_open
#
Functions can be marked to be recalculated when the workbook opens.
With this set, when the workbook is saved some metadata is written
with the workbook and then the cell containing the function is marked
as dirty when the workbook is loaded, causing it to be recalculated.
#

@xl_func(recalc_on_open=True)
def recalc_on_open_test():

now = datetime.datetime.now()
return now.strftime("Updated at %Y-%m-%d %H:%M:%S")

#
6) Formatting
#
PyXLL can automatically apply a formatter to the range the function is called from.
#
from pyxll import Formatter

date_formatter = Formatter(number_format="YYYY-mm-dd")

@xl_func(formatter=date_formatter, recalc_on_open=True)
def formatted_datetime_pyxll_function():

return datetime.date.today()

Formatters can be combined by adding them
highlight_formatter = Formatter(interior_color=Formatter.rgb(255, 255, 0), bold=True)

@xl_func(formatter=date_formatter + highlight_formatter, recalc_on_open=True)
def formatted_datetime_pyxll_function_2():

return datetime.date.today()

#
7) Function type
#
PyXLL functions can be passed as arguments to other PyXLL functions.
This is useful for 'apply' style operations where you want to pass
a function in to a more complex function to change its behaviour.
#

(continues on next page)

5.1. UDF Examples 212

PyXLL User Guide, Release 5.8.0

(continued from previous page)

@xl_func("str: str")
def py_uppercase(x):

"""Convert a single string to upper case"""
return x.upper()

@xl_func("str: str")
def py_titlecase(x):

"""Convert a single string to title casing."""
return x.title()

@xl_func("var[][] values, function func: var[][]", auto_resize=True)
def py_apply_to_range(values, func):

"""Apply a PyXLL function to a range of values.
The second argument is another PyXLL function that will
be called for each cell in the 'values' array argument.
"""
Iterate over the input array and create a new transformed array
new_array = []
for row in values:

new_row = []
for value in row:

Call the function passed in for each item in input array.
new_value = func(value)
new_row.append(new_value)

Add the row of new values to the new array
new_array.append(new_row)

The returned array is the result of calling 'func' for each item in
the original input array.
return new_array

5.2 Pandas Examples

All examples are included in the PyXLL download.

Plain text version

"""
PyXLL Examples: Pandas

This module contains example functions that show how pandas DataFrames and Series
can be passed to and from Excel to Python functions using PyXLL.

Pandas needs to be installed for this example to work correctly.

See also the included examples.xlsx file.
"""
from pyxll import xl_func, xl_macro, DataFrameFormatter, XLCell

@xl_func(volatile=True)
def pandas_is_installed():

(continues on next page)

5.2. Pandas Examples 213

PyXLL User Guide, Release 5.8.0

(continued from previous page)

"""returns True if pandas is installed"""
try:

import pandas
return True

except ImportError:
return False

The DataFrameFormatter object can be used for format DataFrames returned to Excel␣
→˓from PyXLL.
df_formatter = DataFrameFormatter()

@xl_func("int, int: dataframe<index=True>",
auto_resize=True,
formatter=df_formatter)

def random_dataframe(rows, columns):
"""
Creates a DataFrame of random numbers.

:param rows: Number of rows to create the DataFrame with.
:param columns: Number of columns to create the DataFrame with.
"""
import pandas as pa
import numpy as np

data = np.random.rand(rows, columns)
column_names = [chr(ord('A') + x) for x in range(columns)]
df = pa.DataFrame(data, columns=column_names)

return df

@xl_func("dataframe<index=True>, float[], str[], str[]: dataframe<index=True>",
auto_resize=True,
formatter=df_formatter)

def describe_dataframe(df, percentiles=[], include=[], exclude=[]):
"""
Generates descriptive statistics that summarize the central tendency, dispersion␣

→˓and shape of a dataset's
distribution, excluding NaN values.

:param df: DataFrame to describe.
:param percentiles: The percentiles to include in the output. All should fall␣

→˓between 0 and 1.
:param include: dtypes to include.
:param exclude: dtypes to exclude.
:return:
"""
filter out any blanks
percentiles = list(filter(None, percentiles))
include = list(filter(None, include))
exclude = list(filter(None, exclude))

return df.describe(percentiles=percentiles or None,
include=include or None,

(continues on next page)

5.2. Pandas Examples 214

PyXLL User Guide, Release 5.8.0

(continued from previous page)

exclude=exclude or None)

@xl_macro
def pandas_dataframe_table_example():

"""Excel macro that reads a range as a pandas DataFrame
and then writes it to an Excel table.
"""
'DF_TABLE_INPUT' is a named range in the examples.xlsx workbook.
Get that cell as an XLCell instance to read the input data from.
input_cell = XLCell.from_range("DF_TABLE_INPUT")

Get the input range as a pandas DataFrame.
The 'auto_resize' option is used to get the entire data set.
df = input_cell.options(auto_resize=True, type="pandas.dataframe<index=True>").

→˓value

'DF_TABLE_OUTPUT' is a named range in the examples.xlsx workbook.
Get that cell as an XLCEll instance to write the output table to.
output_cell = XLCell.from_range("DF_TABLE_OUTPUT")

Write the input DataFrame to the output cell as an Excel table.
output_cell.options(type="table<pandas.dataframe<index=False>>").value = df

5.3 Cached Objects Examples

All examples are included in the PyXLL download.

Plain text version

"""
PyXLL Examples: Object Cache Example

This module contains example functions that make use of the PyXLL
object cache.

When Python objects that can't be transformed into a basic type that
Excel can display are returned, PyXLL inserts them into a global
object cache and returns a reference id for the object. When this reference
id is passed to another PyXLL function the object is retrieved from the
cache and passed to the PyXLL function.

PyXLL keeps track of uses of the cached objects and removes items from the
cache when they are no longer needed.

See also the included examples.xlsx file.
"""
from pyxll import xl_func

class MyTestClass(object):
"""A basic class for testing the cached_object type"""

def __init__(self, x):
self.__x = x

(continues on next page)

5.3. Cached Objects Examples 215

PyXLL User Guide, Release 5.8.0

(continued from previous page)

def __str__(self):
return "%s(%s)" % (self.__class__.__name__, self.__x)

@xl_func("var: object")
def cached_object_return_test(x):

"""returns an instance of MyTestClass"""
return MyTestClass(x)

@xl_func("object: string")
def cached_object_arg_test(x):

"""takes a MyTestClass instance and returns a string"""
return str(x)

class MyDataGrid(object):
"""
A second class for demonstrating cached_object types.
This class is constructed with a grid of data and has
some basic methods which are also exposed as worksheet
functions.
"""

def __init__(self, grid):
self.__grid = grid

def sum(self):
"""returns the sum of the numbers in the grid"""
total = 0
for row in self.__grid:

total += sum(row)
return total

def __len__(self):
total = 0
for row in self.__grid:

total += len(row)
return total

def __str__(self):
return "%s(%d values)" % (self.__class__.__name__, len(self))

@xl_func("float[][]: object")
def make_datagrid(x):

"""returns a MyDataGrid object"""
return MyDataGrid(x)

@xl_func("object: int")
def datagrid_len(x):

"""returns the length of a MyDataGrid object"""
return len(x)

(continues on next page)

5.3. Cached Objects Examples 216

PyXLL User Guide, Release 5.8.0

(continued from previous page)

@xl_func("object: float")
def datagrid_sum(x):

"""returns the sum of a MyDataGrid object"""
return x.sum()

@xl_func("object: string")
def datagrid_str(x):

"""returns the string representation of a MyDataGrid object"""
return str(x)

5.4 Custom Type Examples

All examples are included in the PyXLL download.

Plain text version

"""
PyXLL Examples: Custom types

Worksheet functions can use a number of standard types
as shown in the worksheetfuncs example.

It's also possible to define custom types that
can be used in the PyXLL function signatures
as shown by these examples.

For a more complicated custom type example see the
object cache example.
"""

#
xl_arg_type and xl_return type are decorators that can
be used to declare types that our excel functions
can use in addition to the standard types
#
from pyxll import xl_func, xl_arg_type, xl_return_type

#
1) Custom types
#

#
All variables are passed to and from excel as the basic types,
but it's possible to register conversion functions that will
convert those basic types to whatever types you like before
they reach your function, (or after you function returns them
in the case of returned values).
#

#
CustomType1 is a very simple class used to demonstrate
custom types.

(continues on next page)

5.4. Custom Type Examples 217

PyXLL User Guide, Release 5.8.0

(continued from previous page)

#
class CustomType1:

def __init__(self, name):
self.name = name

def greeting(self):
return "Hello, my name is %s" % self.name

#
To use CustomType1 as an argument to a pyxll function you have to
register a function to convert from a basic type to our custom type.
#
xl_arg_type takes two arguments, the new custom type name, and the
base type.
#

@xl_arg_type("custom1", "string")
def string_to_custom1(name):

return CustomType1(name)

#
now the type 'custom1' can be used as an argument type
in a function signature.
#

@xl_func("custom1 x: string")
def customtype_pyxll_function_1(x):

"""returns x.greeting()"""
return x.greeting()

#
To use CustomType1 as a return type for a pyxll function you have
to register a function to convert from the custom type to a basic type.
#
xl_return_type takes two arguments, the new custom type name, and
the base type.
#

@xl_return_type("custom1", "string")
def custom1_to_string(x):

return x.name

#
now the type 'custom1' can be used as the return type.
#

@xl_func("custom1 x: custom1")
def customtype_pyxll_function_2(x):

"""check the type and return the same object"""
assert isinstance(x, CustomType1), "expected an CustomType1 object"""
return x

#
CustomType2 is another example that caches its instances
so they can be referred to from excel functions.

(continues on next page)

5.4. Custom Type Examples 218

PyXLL User Guide, Release 5.8.0

(continued from previous page)

#

class CustomType2:

__instances__ = {}

def __init__(self, name, value):
self.value = value
self.id = "%s-%d" % (name, id(self))

overwrite any existing instance with self
self.__instances__[name] = self

def getValue(self):
return self.value

@classmethod
def getInstance(cls, id):

name, unused = id.split("-")
return cls.__instances__[name]

def getId(self):
return self.id

@xl_arg_type("custom2", "string")
def string_to_custom2(x):

return CustomType2.getInstance(x)

@xl_return_type("custom2", "string")
def custom2_to_string(x):

return x.getId()

@xl_func("string name, float value: custom2")
def customtype_pyxll_function_3(name, value):

"""returns a new CustomType2 object"""
return CustomType2(name, value)

@xl_func("custom2 x: float")
def customtype_pyxll_function_4(x):

"""returns x.getValue()"""
return x.getValue()

#
custom types may be base types of other custom types, as
long as the ultimate base type is a basic type.
#
This means you can chain conversion functions together.
#

class CustomType3:

def __init__(self, custom2):

(continues on next page)

5.4. Custom Type Examples 219

PyXLL User Guide, Release 5.8.0

(continued from previous page)

self.custom2 = custom2

def getValue(self):
return self.custom2.getValue() * 2

@xl_arg_type("custom3", "custom2")
def custom2_to_custom3(x):

return CustomType3(x)

@xl_return_type("custom3", "custom2")
def custom3_to_custom2(x):

return x.custom2

#
when converting from an excel cell to a CustomType3 object,
the string will first be used to get a CustomType2 object
via the registed function string_to_custom2, and then
custom2_to_custom3 will be called to get the final
CustomType3 object.
#

@xl_func("custom3 x: float")
def customtype_pyxll_function_5(x):

"""return x.getValue()"""
return x.getValue()

5.5 Menu Examples

All examples are included in the PyXLL download.

Plain text version

"""
PyXLL Examples: Menus

The PyXLL Excel Addin is configured to load one or more
python modules when it's loaded.

Menus can be added to Excel via the pyxll xl_menu decorator.
"""
import traceback
import logging
_log = logging.getLogger(__name__)

the webbrowser module is used in an example to open the log file
try:

import webbrowser
except ImportError:

_log.warning("*** webbrowser could not be imported ***")
_log.warning("*** the menu examples will not work correctly ***")

import os
(continues on next page)

5.5. Menu Examples 220

PyXLL User Guide, Release 5.8.0

(continued from previous page)

#
1) Basics - adding a menu items to Excel
#

#
xl_menu is the decorator used for addin menus to Excel.
#
from pyxll import xl_menu, get_config, xl_app, xl_version, get_last_error, xlcAlert

#
The only required argument is the menu item name.
The example below will add a new menu item to the
addin's default menu.
#

@xl_menu("Example Menu Item 1")
def on_example_menu_item_1():

xlcAlert("Hello from PyXLL")

#
menu items are normally sorted alphabetically, but the order
keyword can be used to influence the ordering of the items
in a menu.
#
The default value for all sort keyword arguments is 0, so positive
values will result in the item appearing further down the list
and negative numbers result in the item appearing further up.
#

@xl_menu("Another example menu item", order=1)
def on_example_menu_item_2():

xlcAlert("Hello again from PyXLL")

#
It's possible to add items to menus other than the default menu.
The example below creates a new menu called 'My new menu' with
one item 'Click me' in it.
#
The menu_order keyword is optional, but may be used to influence
the order that the custom menus appear in.
#

@xl_menu("Click me", menu="PyXLL example menu", menu_order=1)
def on_example_menu_item_3():

xlcAlert("Adding multiple menus is easy")

#
2) Sub-menus
#

it's possible to add sub-menus just by using the sub_menu
keyword argument. The example below adds a new sub menu
'Sub Menu' to the default menu.
#
The order keyword argument affects where the sub menu will

(continues on next page)

5.5. Menu Examples 221

PyXLL User Guide, Release 5.8.0

(continued from previous page)

appear in the parent menu, and the sub_order keyword argument
affects where the item will appear in the sub menu.
#

@xl_menu("Click me", sub_menu="More Examples", order=2)
def on_example_submenu_item_1():

xlcAlert("Sub-menus can be created easily with PyXLL")

#
When using Excel 2007 and onwards the Excel functions accept unicode strings
#
@xl_menu("Unicode Test", sub_menu="More Examples")
def on_unicode_test():

xlcAlert(u"\u01d9ni\u0186\u020dde")

#
A simple menu item to show how to get the PyXLL config
object and open the log file.
#
@xl_menu("Open log file", order=3)
def on_open_logfile():

the PyXLL config is accessed as a ConfigParser.ConfigParser object
config = get_config()
if config.has_option("LOG", "path") and config.has_option("LOG", "file"):

path = os.path.join(config.get("LOG", "path"), config.get("LOG", "file"))
webbrowser.open("file://%s" % path)

#
If a cell returns an error it is written to the log file
but can also be retrieved using 'get_last_error'.
This menu item displays the last error captured for the
current active cell.
#
@xl_menu("Show last error")
def show_last_error():

selection = xl_app().Selection
exc_type, exc_value, exc_traceback = get_last_error(selection)

if exc_type is None:
xlcAlert("No error found for the selected cell")
return

msg = "".join(traceback.format_exception(exc_type, exc_value, exc_traceback))
if xl_version() < 12:

msg = msg[:254]

xlcAlert(msg)

5.5. Menu Examples 222

PyXLL User Guide, Release 5.8.0

5.6 Macros and Excel Scripting

All examples are included in the PyXLL download.

Plain text version

"""
PyXLL Examples: Automation

PyXLL worksheet and menu functions can call back into Excel
using the Excel COM API*.

In addition to the COM API there are a few Excel functions
exposed via PyXLL that allow you to query information about
the current state of Excel without using COM.

Excel uses different security policies for different types
of functions that are registered with it. Depending on
the type of function, you may or may not be able to make
some calls to Excel.

Menu functions and macros are registered as 'commands'.
Commands are free to call back into Excel and make changes to
documents. These are equivalent to the VBA Sub routines.

Worksheet functions are registered as 'functions'. These
are limited in what they can do. You will be able to
call back into Excel to read values, but not change
anything. Most of the Excel functions exposed via PyXLL
will not work in worksheet functions. These are equivalent
to VBA Functions.

There is a third type of function - macro-sheet equivalent
functions. These are worksheet functions that are allowed to
do most things a macro function (command) would be allowed
to do. These shouldn't be used lightly as they may break
the calculation dependencies between cells if not
used carefully.

* Excel COM support was added in Office 2000. If you are
using an earlier version these COM examples won't work.

"""

import pyxll
from pyxll import xl_menu, xl_func, xl_macro

import logging
_log = logging.getLogger(__name__)

#
Getting the Excel COM object
#
PyXLL has a function 'xl_app'. This returns the Excel application
instance either as a win32com.client.Dispatch object or a
comtypes object (which com package is used may be set in the
config file). The default is to use win32com.
#

(continues on next page)

5.6. Macros and Excel Scripting 223

PyXLL User Guide, Release 5.8.0

(continued from previous page)

It is better to use this than
win32com.client.Dispatch("Excel.Application")
as it will always be the correct handle - ie the handle
to the correct instance of Excel.
#
For more information on win32com see the pywin32 project
on sourceforge.
#
The Excel object model is the same from COM as from VBA
so usually it's straightforward to write something
in python if you know how to do it in VBA.
#
For more information about the Excel object model
see MSDN or the object browser in the Excel VBA editor.
#
from pyxll import xl_app

#
A simple example of a menu function that modifies
the contents of the selected range.
#

@xl_menu("win32com test", sub_menu="More Examples")
def win32com_menu_test():

get the current selected range and set some text
selection = xl_app().Selection
selection.Value = "Hello!"
pyxll.xlcAlert("Some text has been written to the current cell")

#
Macros can also be used to call back into Excel when
a control is activated.
#
These work in the same way as VBA macros, you just assign
them to the control in Excel by name.
#

@xl_macro
def button_example():

xl = xl_app()
range = xl.Range("button_output")
range.Value = range.Value + 1

@xl_macro
def checkbox_example():

xl = xl_app()
check_box = xl.ActiveSheet.CheckBoxes(xl.Caller)
if check_box.Value == 1:

xl.Range("checkbox_output").Value = "CHECKED"
else:

xl.Range("checkbox_output").Value = "Click the check box"

@xl_macro
def scrollbar_example():

(continues on next page)

5.6. Macros and Excel Scripting 224

PyXLL User Guide, Release 5.8.0

(continued from previous page)

xl = xl_app()
caller = xl.Caller
scrollbar = xl.ActiveSheet.ScrollBars(xl.Caller)
xl.Range("scrollbar_output").Value = scrollbar.Value

#
Worksheet functions can also call back into Excel.
#
The function 'schedule_call' must be used to do the
actual work of calling back into Excel after Excel has
finished calculating. Otherwise Excel may lock waiting for
the function to complete before allowing the COM object
to modify the sheet, which will cause a dead-lock.
#
To be able to call xlfCaller from the worksheet function,
the function must be declared as a macro sheet equivalent
function by passing macro=True to xl_func.
#
If your function modifies the Excel worksheet it may trigger
a recalculation, and so you have to take care not to
cause an infinite loop that will hang Excel.
#
Accessing the 'address' property of the XLCell returned
by xlfCaller requires this function to be a macro sheet
equivalent function.
#

@xl_func(macro=True)
def automation_example(rows, cols, value):

"""copies value to a range of rows x cols below the calling cell"""

Get the address of the calling cell using xlfCaller
caller = pyxll.xlfCaller()
address = caller.address

The update is done asynchronously so as not to block Excel by
updating the worksheet from a worksheet function
def update_func():

Get the Excel.Application COM object
xl = xl_app()

Get an Excel.Range object from the XLCell instance
range = caller.to_range(com_package="win32com")

get the cell below and expand it to rows x cols
range = xl.Range(range.Resize(2, 1), range.Resize(rows+1, cols))

and set the range's value
range.Value = value

kick off the asynchronous call the update function
pyxll.schedule_call(update_func)

return address

5.6. Macros and Excel Scripting 225

PyXLL User Guide, Release 5.8.0

5.7 Event Handler Examples

All examples are included in the PyXLL download.

Plain text version

"""
PyXLL Examples: Callbacks

The PyXLL Excel Addin is configured to load one or more
python modules when it's loaded.

Moldules can register callbacks with PyXLL that will be
called at various times to inform the user code of
certain events.
"""

from pyxll import xl_on_open, \
xl_on_reload, \
xl_on_close, \
xl_license_notifier, \
xlcAlert, \
xlcCalculateNow

import logging
_log = logging.getLogger(__name__)

@xl_on_open
def on_open(import_info):

"""
on_open is registered to be called by PyXLL when the addin
is opened via the xl_on_open decorator.
This happens each time Excel starts with PyXLL installed.
"""
Check to see which modules didn't import correctly.
for modulename, module, exc_info in import_info:

if module is None:
exc_type, exc_value, exc_traceback = exc_info
_log.error("examples.callbacks.on_open: Error loading '%s' : %s" %␣

→˓(modulename, exc_value))

@xl_on_reload
def on_reload(import_info):

"""
on_reload is registered to be called by PyXLL whenever a
reload occurs via the xl_on_reload decorator.
"""
Check to see if any modules didn't import correctly.
errors = 0
for modulename, module, exc_info in import_info:

if module is None:
exc_type, exc_value, exc_traceback = exc_info
_log.error("examples.callbacks.on_reload: Error loading '%s' : %s" %␣

→˓(modulename, exc_value))
errors += 1

(continues on next page)

5.7. Event Handler Examples 226

PyXLL User Guide, Release 5.8.0

(continued from previous page)

Report if everything reloaded OK.
If there are errors they will be dealt with by the error_handler.
if errors == 0:

xlcAlert("Everything reloaded OK!\n\n(Message from callbacks.py example)")

Recalculate all open workbooks.
xlcCalculateNow()

@xl_on_close
def on_close():

"""
on_close will get called as Excel is about to close.

This is a good time to clean up any globals and stop
any background threads so that the python interpretter
can be closed down cleanly.

The user may cancel Excel closing after this has been
called, so your code should make sure that anything
that's been cleaned up here will get recreated again
if it's needed.
"""
_log.info("examples.callbacks.on_close: PyXLL is closing")

@xl_license_notifier
def license_notifier(name, expdate, days_left):

"""
license_notifier will be called when PyXLL is starting up, after
it has read the config and verified the license.

If there is no license name will be None and days_left will be less than 0.
"""
if days_left >= 0:

_log.info(("examples.callbacks.license_notifier:\n"
" This copy of PyXLL is licensed to %s\n"
" %d days left before the license expires (%s)") % (name, days_

→˓left, expdate))
elif expdate is not None:

_log.info("callbacks.license_notifier: License key expired on %s" % expdate)
else:

_log.info("callbacks.license_notifier: Invalid license key")

5.7. Event Handler Examples 227

INDEX

Symbols
__init__() (CTPBridgeBase method), 188
__init__() (ConditionalFormatter method), 193
__init__() (DataFrameFormatter method), 192
__init__() (DateFormatter method), 193
__init__() (PlotBridgeBase method), 185
__init__() (Table method), 195

A
address (XLCell attribute), 178
Application (CustomTaskPane attribute), 187
apply() (Formatter method), 190
apply_cell() (Formatter method), 191
apply_filters() (TableBase method), 196
apply_sorting() (TableBase method), 196
apply_style() (Formatter method), 191

C
cached_object_count() (in module pyxll), 202
can_export() (PlotBridgeBase method), 185
clear() (Formatter method), 191
close() (CTPBridgeBase method), 188
columns() (TableBase method), 196
com_package() (TableBase method), 195
ConditionalFormatter (class in pyxll), 193
ConditionalFormatterBase (class in pyxll), 194
connect() (RTD method), 174
ContentControl (CustomTaskPane attribute), 187
create_ctp() (in module pyxll), 186
create_table() (TableBase method), 196
CTPBridgeBase (class in pyxll), 188
CustomTaskPane (class in pyxll), 187

D
DataFrameFormatter (class in pyxll), 192
DateFormatter (class in pyxll), 193
default_header_formatter (DataFrameFormatter

attribute), 192
default_index_formatter (DataFrameFormatter

attribute), 193
default_row_formatters (DataFrameFormatter at-

tribute), 192
Delete() (CustomTaskPane method), 188
disconnect() (RTD method), 175
DockPosition (CustomTaskPane attribute), 187

DockPositionRestrict (CustomTaskPane attribute),
188

E
ErrorContext (class in pyxll), 198
export() (PlotBridgeBase method), 185

F
find_table() (TableBase method), 195
first_col (XLRect attribute), 180
first_row (XLRect attribute), 180
Formatter (class in pyxll), 190
formula (XLCell attribute), 178
from_range() (XLCell method), 178
function_name (ErrorContext attribute), 198

G
get_config() (in module pyxll), 202
get_dialog_type() (in module pyxll), 202
get_event_loop() (in module pyxll), 202
get_formatters() (ConditionalFormatterBase

method), 194
get_hwnd() (CTPBridgeBase method), 188
get_last_error() (in module pyxll), 197
get_ribbon_xml() (in module pyxll), 182
get_size_hint() (PlotBridgeBase method), 185
get_title() (CTPBridgeBase method), 188

H
Height (CustomTaskPane attribute), 187

I
IMPORT (ErrorContext attribute), 198
import_errors (ErrorContext attribute), 198
is_calculated (XLCell attribute), 179

L
last_col (XLRect attribute), 180
last_row (XLRect attribute), 180
load_image() (in module pyxll), 181

M
MACRO (ErrorContext attribute), 198
MENU (ErrorContext attribute), 198

228

PyXLL User Guide, Release 5.8.0

N
note (XLCell attribute), 179

O
ObjectCacheKeyError (class in pyxll), 199
offset() (XLCell method), 180
on_close() (CTPBridgeBase method), 188
on_error() (TableBase method), 196
on_timer() (CTPBridgeBase method), 189
on_window_closed() (CTPBridgeBase method), 189
on_window_destroyed() (CTPBridgeBase method),

189
options() (XLCell method), 179

P
plot() (in module pyxll), 184
PlotBridgeBase (class in pyxll), 185
post_attach() (CTPBridgeBase method), 188
pre_attach() (CTPBridgeBase method), 188
process_message() (CTPBridgeBase method), 189

R
rebind() (in module pyxll), 201
rect (XLCell attribute), 179
reload() (in module pyxll), 201
remove_ribbon_tab() (in module pyxll), 182
resize() (XLCell method), 180
resize_table() (TableBase method), 196
rgb() (Formatter method), 192
RIBBON (ErrorContext attribute), 198
rows() (TableBase method), 196
RTD (class in pyxll), 174

S
schedule_call() (in module pyxll), 199
set_error() (RTD method), 175
set_error() (XLAsyncHandle method), 175
set_ribbon_tab() (in module pyxll), 182
set_ribbon_xml() (in module pyxll), 182
set_value() (XLAsyncHandle method), 175
sheet_id (XLCell attribute), 179
sheet_name (XLCell attribute), 179
SpillError (class in pyxll), 199

T
Table (class in pyxll), 194
TableBase (class in pyxll), 195
Title (CustomTaskPane attribute), 187
to_range() (XLCell method), 180
translate_accelerator() (CTPBridgeBase

method), 189
type (ErrorContext attribute), 198

U
UDF (ErrorContext attribute), 198
update_table() (TableBase method), 196

V
value (RTD attribute), 174
value (XLCell attribute), 178
Visible (CustomTaskPane attribute), 187

W
Width (CustomTaskPane attribute), 187
Window (CustomTaskPane attribute), 187

X
xl_app() (in module pyxll), 177
xl_func() (in module pyxll), 172
xl_license_notifier() (in module pyxll), 204
xl_macro() (in module pyxll), 176
xl_menu() (in module pyxll), 183
xl_on_close() (in module pyxll), 204
xl_on_open() (in module pyxll), 203
xl_on_reload() (in module pyxll), 203
xl_version() (in module pyxll), 201
xlAbort() (in module pyxll), 208
XLAsyncHandle (class in pyxll), 175
xlAsyncReturn() (in module pyxll), 208
xlcAlert() (in module pyxll), 207
xlcCalculateDocument() (in module pyxll), 208
xlcCalculateNow() (in module pyxll), 207
xlcCalculation() (in module pyxll), 207
XLCell (class in pyxll), 178
xlfCaller() (in module pyxll), 205
xlfGetDocument() (in module pyxll), 208
xlfGetWindow() (in module pyxll), 206
xlfGetWorkbook() (in module pyxll), 206
xlfGetWorkspace() (in module pyxll), 206
xlfVolatile() (in module pyxll), 207
xlfWindows() (in module pyxll), 206
XLRect (class in pyxll), 180
xlSheetId() (in module pyxll), 205
xlSheetNm() (in module pyxll), 208

Index 229

	Introduction to PyXLL
	What is PyXLL?
	How does it work?
	How does PyXLL compare with other packages?
	Before You Start
	Next Steps
	Install PyXLL
	Calling a Python Function in Excel
	Additional Resources

	What’s new in PyXLL 5
	New Features and Improvements
	Excel Tables
	RTD Generators
	Polars Types
	Easier Installation
	Custom Task Panes
	Plotting Integrations
	Serialized Cached Objects
	Entry Points
	Composite Ribbon Toolbars
	Auto-Rebinding
	Improved Cell Formatting
	Log Rolling

	Important notes for upgrading from previous versions
	Updated Software License Agreement
	Deep reloading is now enabled by default
	RTD functions no longer recalculate on open by default
	async_func has been replaced with schedule_call

	User Guide
	Installing PyXLL
	First Time Users
	Installing the PyXLL Excel Add-In
	Next Steps
	Common Issues and Troubleshooting

	PyXLL Command Line Tool
	pyxll install
	pyxll configure
	pyxll status
	pyxll update
	pyxll activate
	pyxll install-certificate
	pyxll uninstall

	Manual Installation
	1. Download the PyXLL Zipfile
	2. Unpack the Zipfile
	3. Edit the Config File
	4. Install the Add-In in Excel
	5. Install the PyXLL Stubs Package (Optional)
	Next Steps

	Using PyXLL with Anaconda
	What is Anaconda
	Which Anaconda Distribution to Choose
	Creating a Virtual Environment (optional)
	Installing PyXLL with Anaconda
	Switching Virtual Environments

	Configuring PyXLL
	Python Settings
	PyXLL Settings
	Common Settings
	Reload Settings
	Abort Settings
	Array Settings
	Object Cache Settings
	NaN Return Settings
	AsyncIO Settings
	win32com Settings
	Error Handling
	RTD Settings
	CTP Settings
	Metadata
	Web Control Settings
	Other Settings

	License Key
	Logging
	Warnings
	Configuration Variables
	Environment Variables
	Startup Script
	Introduction
	Example
	Script Commands
	pyxll-get-option
	pyxll-set-option
	pyxll-unset-option
	pyxll-set-progress
	pyxll-show-progress
	pyxll-set-progress-status
	pyxll-set-progress-title
	pyxll-set-progress-caption
	pyxll-get-version
	pyxll-get-python-version
	pyxll-get-arch
	pyxll-get-pid
	pyxll-restart-excel
	pyxll-set-error-message

	Menu Ordering
	Shortcuts

	Worksheet Functions
	Introduction
	Writing an Excel Worksheet Function in Python
	Configuring PyXLL with your Python Module
	Calling your Python Function from Excel
	Different Argument and Return Types

	Argument and Return Types
	Specifying the Argument and Return Types
	@xl_func Function Signature
	Python Type Hints
	@xl_arg and @xl_return Decorators
	Type Parameters

	Standard Types
	Array Types
	The ‘var’ Type
	Numpy Types
	Pandas Types
	Polars Types
	Dictionary Types
	Dataclass Types
	Union Types
	Optional Types
	Function Type
	Error Types

	Using Python Objects Directly
	Custom Types
	Manual Type Conversion

	Cached Objects
	Example
	Accessing Cached Objects in Macros
	Populating the Cache On Loading
	Saving Objects in the Workbook
	Custom Object Handles
	Mixing Primitive Values and Objects
	Clearing the Cache on Reloading

	Array Functions
	Array Functions in Python
	Array Types
	Ctrl+Shift+Enter (CSE) Array Functions
	Auto Resizing Array Functions
	Dynamic Array Functions

	NumPy Array Types
	Pandas Types
	Type Annotations
	Type Parameters

	Polars DataFrames
	Type Annotations
	Type Parameters

	Asynchronous Functions
	Asynchronous Worksheet Functions
	The asyncio Event Loop
	Before Python 3.5

	Handling Errors
	Exceptions raised by a UDF
	Passing Errors as Values
	Retrieving Error Information

	Function Documentation
	Variable and Keyword Arguments
	Variable Arguments (*args)
	Keyword Arguments (**kwargs)

	Recalculating On Open
	Use-Cases
	Example
	Default Behaviour
	Disabling Completely

	Interrupting Functions

	Real Time Data
	Introduction
	RTD Generators
	Async RTD Generators

	Using the RTD Class
	RTD Class Example
	RTD Class Async Example

	RTD Data Types
	Throttle Interval
	Starting RTD Functions Automatically

	Cell Formatting
	Formatting Worksheet Functions
	Pandas DataFrame Formatting
	Conditional Formatting
	Custom Conditional Formatters

	Custom Formatters
	Combining Multiple Formatters

	Formatting in Macros Functions

	Charts and Plotting
	Matplotlib
	Plotting with matplotlib
	Using matplotlib.pyplot
	Animated Plots

	Plotting with Pandas
	Plotly
	Seaborn
	Bokeh
	Altair
	Other Plotting Packages
	Plotting from Worksheet Functions
	Plotting from Menus, Macros and Elsewhere
	Resizing and Replotting

	Custom User Interfaces
	PySide and PyQt
	Creating a Qt Widget
	Creating a Custom Task Pane from a Qt Widget

	wxPython
	Creating a wx Frame
	Creating a Custom Task Pane from a wx.Frame

	Tkinter
	Creating a tk Frame
	Creating a Custom Task Pane from a tkinter.Frame

	Other UI Toolkits

	Using Pandas in Excel
	Pandas Types Options
	Passing as Python objects instead of Excel arrays
	Using the Pandas type converters outside of a UDF

	Customizing the Ribbon
	Introduction
	Creating a Custom Tab
	Action Functions
	Using Images
	Modifying the Ribbon
	Merging Ribbon Files

	Context Menu Functions
	Introduction
	Adding a Python Function to the Context Menu
	Creating Sub-Menus
	Dynamic Menus
	References

	Macro Functions
	Introduction
	Exposing Functions as Macros
	Calling Macros From Excel
	Calling Excel from Python
	Reading Excel Values from Python
	Writing Python Values to Excel
	Keyboard Shortcuts

	Working with Tables
	Writing a Table
	Reading a Table
	Updating a Table
	Tables and Worksheet Functions
	Advanced Features
	Naming Tables
	Advanced Customization

	Python as a VBA Replacement
	The Excel Object Model
	Accessing the Excel Object Model in Python
	Differences between VBA and Python
	Case Sensitivity
	Calling Methods
	Named Arguments
	Properties
	Properties with Arguments
	Implicit Objects and ‘With’
	Indexing Collections

	Enums and Constant Values
	Excel and Threading
	Notes on Debugging

	Menu Functions
	Custom Menu Items
	New Menus
	Sub-Menus

	Reloading and Rebinding
	Introduction
	How to Reload PyXLL
	Reload Manually
	Automatic Reloading
	Programmatic Reloading

	Deep Reloading
	Rebinding

	Error Handling
	Introduction
	Standard Error Handlers
	Custom Error Handlers

	Deploying your add-in
	Sharing everything on a network drive
	Using a standalone zip file
	Building an installer
	Using a common pyxll.cfg file
	Using a startup script to install and update Python code
	Deploying the Python Environment
	Adding the PyXLL add-in to Excel
	Setuptools Entry Points
	modules entry point
	ribbon entry point

	Workbook Metadata

	API Reference
	Worksheet Functions
	@xl_func
	RTD
	XLAsyncHandle

	Macro Functions
	@xl_macro
	xl_app
	XLCell
	XLRect

	Ribbon Functions
	load_image
	get_ribbon_xml
	set_ribbon_xml
	set_ribbon_tab
	remove_ribbon_tab

	Menu Functions
	@xl_menu

	Plotting
	plot
	PlotBridgeBase

	Custom Task Panes
	create_ctp
	CustomTaskPane
	CTPBridgeBase

	Cell Formatting
	Formatter
	DataFrameFormatter
	DateFormatter
	ConditionalFormatter
	ConditionalFormatterBase

	Tables
	Table
	TableBase

	Errors and Exceptions
	get_last_error
	ErrorContext
	ObjectCacheKeyError
	SpillError

	Utility Functions
	schedule_call
	reload
	rebind
	xl_version
	get_config
	get_dialog_type
	cached_object_count
	get_event_loop

	Event Handlers
	@xl_on_open
	@xl_on_reload
	@xl_on_close
	@xl_license_notifier

	Excel C API Functions
	xlfCaller
	xlfSheetId
	xlfGetWorkspace
	xlfGetWorkbook
	xlfGetWindow
	xlfWindows
	xlfVolatile
	xlcAlert
	xlcCalculation
	xlcCalculateNow
	xlcCalculateDocument
	xlAsyncReturn
	xlAbort
	xlSheetNm
	xlfGetDocument

	Examples
	UDF Examples
	Pandas Examples
	Cached Objects Examples
	Custom Type Examples
	Menu Examples
	Macros and Excel Scripting
	Event Handler Examples

	Index

